ColossalAI/colossalai/shardformer/examples/performance_benchmark.py

87 lines
3.2 KiB
Python

"""
Shardformer Benchmark
"""
import torch
import torch.distributed as dist
import transformers
import triton
import colossalai
from colossalai.shardformer import ShardConfig, ShardFormer
def data_gen(batch_size, seq_length):
input_ids = torch.randint(0, seq_length, (batch_size, seq_length), dtype=torch.long)
attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def data_gen_for_sequence_classification(batch_size, seq_length):
# LM data gen
# the `labels` of LM is the token of the output, cause no padding, use `input_ids` as `labels`
data = data_gen(batch_size, seq_length)
data['labels'] = torch.ones((batch_size), dtype=torch.long)
return data
MODEL_CONFIG = transformers.LlamaConfig(num_hidden_layers=4,
hidden_size=128,
intermediate_size=256,
num_attention_heads=4,
max_position_embeddings=128,
num_labels=16)
BATCH, N_HEADS, N_CTX, D_HEAD = 4, 8, 4096, 64
model_func = lambda: transformers.LlamaForSequenceClassification(MODEL_CONFIG)
# vary seq length for fixed head and batch=4
configs = [
triton.testing.Benchmark(x_names=['N_CTX'],
x_vals=[2**i for i in range(8, 13)],
line_arg='provider',
line_vals=['org_model', 'shard_model'],
line_names=['org_model', 'shard_model'],
styles=[('red', '-'), ('blue', '-')],
ylabel='ms',
plot_name=f'lama_for_sequence_classification-batch-{BATCH}',
args={
'BATCH': BATCH,
'dtype': torch.float16,
'model_func': model_func
})
]
def train(model, data):
output = model(**data)
loss = output.logits.mean()
loss.backward()
@triton.testing.perf_report(configs)
def bench_shardformer(BATCH, N_CTX, provider, model_func, dtype=torch.float32, device="cuda"):
warmup = 10
rep = 100
# prepare data
data = data_gen_for_sequence_classification(BATCH, N_CTX)
data = {k: v.cuda() for k, v in data.items()}
model = model_func().to(device)
model.train()
if provider == "org_model":
fn = lambda: train(model, data)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
if provider == "shard_model":
shard_config = ShardConfig(enable_fused_normalization=True, enable_tensor_parallelism=True)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model = shard_former.optimize(model).cuda()
fn = lambda: train(sharded_model, data)
ms = triton.testing.do_bench(fn, warmup=warmup, rep=rep)
return ms
# start benchmark, command:
# torchrun --standalone --nproc_per_node=2 performance_benchmark.py
if __name__ == "__main__":
colossalai.launch_from_torch({})
bench_shardformer.run(save_path='.', print_data=dist.get_rank() == 0)