mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
232 lines
9.1 KiB
232 lines
9.1 KiB
from colossalai.shardformer.layer import (
|
|
DropoutForParallelInput,
|
|
Embedding1D,
|
|
FusedRMSNorm,
|
|
Linear1D_Col,
|
|
Linear1D_Row,
|
|
VocabParallelEmbedding1D,
|
|
)
|
|
from colossalai.shardformer.policies.basepolicy import ModulePolicyDescription
|
|
|
|
from .._utils import getattr_, setattr_
|
|
from .basepolicy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = ["T5ModelPolicy", "T5ForConditionalGenerationPolicy", "T5EncoderPolicy"]
|
|
|
|
|
|
class T5BasePolicy(Policy):
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# reshape the embedding layer
|
|
r"""
|
|
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
|
"""
|
|
vocab_size = self.model.config.vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers.models.t5.modeling_t5 import (
|
|
T5Attention,
|
|
T5DenseActDense,
|
|
T5DenseGatedActDense,
|
|
T5LayerCrossAttention,
|
|
T5LayerFF,
|
|
T5LayerSelfAttention,
|
|
T5Stack,
|
|
)
|
|
|
|
base_policy = {
|
|
T5Stack:
|
|
ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=DropoutForParallelInput,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="embed_tokens",
|
|
target_module=Embedding1D,
|
|
)
|
|
]),
|
|
T5LayerSelfAttention:
|
|
ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=DropoutForParallelInput,
|
|
),
|
|
]),
|
|
T5LayerCrossAttention:
|
|
ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=DropoutForParallelInput,
|
|
)
|
|
]),
|
|
T5Attention:
|
|
ModulePolicyDescription(attribute_replacement={
|
|
"d_model":
|
|
self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
|
"n_heads":
|
|
self.model.config.num_heads // self.shard_config.tensor_parallel_size,
|
|
"inner_dim":
|
|
self.model.config.num_heads * self.model.config.d_kv // self.shard_config.tensor_parallel_size
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="q",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="k",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="v",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="o",
|
|
target_module=Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(suffix="relative_attention_bias",
|
|
target_module=Embedding1D,
|
|
kwargs=dict(gather_output=False),
|
|
ignore_if_not_exist=True)
|
|
]),
|
|
T5LayerFF:
|
|
ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=DropoutForParallelInput,
|
|
),
|
|
]),
|
|
T5DenseGatedActDense:
|
|
ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="wi_0",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="wi_1",
|
|
target_module=Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="wo", target_module=Linear1D_Col, kwargs=dict(gather_output=True)),
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=DropoutForParallelInput,
|
|
)
|
|
]),
|
|
T5DenseActDense:
|
|
ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="wi",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="wo",
|
|
target_module=Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="dropout",
|
|
target_module=DropoutForParallelInput,
|
|
)
|
|
])
|
|
}
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
base_policy[T5LayerFF].sub_module_replacement.append(
|
|
SubModuleReplacementDescription(suffix="layer_norm", target_module=FusedRMSNorm))
|
|
base_policy[T5LayerSelfAttention].sub_module_replacement.append(
|
|
SubModuleReplacementDescription(suffix="layer_norm", target_module=FusedRMSNorm))
|
|
base_policy[T5LayerCrossAttention].sub_module_replacement.append(
|
|
SubModuleReplacementDescription(suffix="layer_norm", target_module=FusedRMSNorm))
|
|
base_policy[T5Stack].sub_module_replacement.append(
|
|
SubModuleReplacementDescription(suffix="final_layer_norm", target_module=FusedRMSNorm))
|
|
|
|
return base_policy
|
|
|
|
def postprocess(self):
|
|
binding_map = [["shared", "encoder.embed_tokens"], ["shared", "decoder.embed_tokens"]]
|
|
|
|
for k, v in binding_map:
|
|
mod = getattr_(self.model, k)
|
|
setattr_(self.model, v, mod)
|
|
return self.model
|
|
|
|
|
|
class T5ModelPolicy(T5BasePolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers import T5Model
|
|
|
|
base_policy = super().module_policy()
|
|
base_policy[T5Model] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="shared",
|
|
target_module=VocabParallelEmbedding1D,
|
|
)
|
|
])
|
|
return base_policy
|
|
|
|
|
|
class T5ForConditionalGenerationPolicy(T5BasePolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers import T5ForConditionalGeneration
|
|
|
|
policy = super().module_policy()
|
|
policy[T5ForConditionalGeneration] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="shared",
|
|
target_module=VocabParallelEmbedding1D,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True))
|
|
])
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
super().postprocess()
|
|
|
|
binding_map = {"shared": "lm_head"}
|
|
|
|
for k, v in binding_map.items():
|
|
src_mod = getattr_(self.model, k)
|
|
dst_mod = getattr_(self.model, v)
|
|
dst_mod.weight = src_mod.weight
|
|
|
|
return self.model
|
|
|
|
|
|
class T5EncoderPolicy(T5BasePolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers import T5EncoderModel
|
|
|
|
base_policy = super().module_policy()
|
|
base_policy[T5EncoderModel] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="shared",
|
|
target_module=VocabParallelEmbedding1D,
|
|
)
|
|
])
|
|
return base_policy
|
|
|
|
def postprocess(self):
|
|
binding_map = [
|
|
["shared", "encoder.embed_tokens"],
|
|
]
|
|
|
|
for k, v in binding_map:
|
|
mod = getattr_(self.model, k)
|
|
setattr_(self.model, v, mod)
|
|
return self.model
|