mirror of https://github.com/hpcaitech/ColossalAI
554aa9592e
* [legacy] move communication to legacy (#4640) * [legacy] refactor logger and clean up legacy codes (#4654) * [legacy] make logger independent to gpc * [legacy] make optim independent to registry * [legacy] move test engine to legacy * [legacy] move nn to legacy (#4656) * [legacy] move nn to legacy * [checkpointio] fix save hf config * [test] remove useledd rpc pp test * [legacy] fix nn init * [example] skip tutorial hybriad parallel example * [devops] test doc check * [devops] test doc check |
||
---|---|---|
.. | ||
README.md | ||
config.py | ||
requirements.txt | ||
test_ci.sh | ||
train.py |
README.md
Multi-dimensional Parallelism with Colossal-AI
Table of contents
📚 Overview
This example lets you to quickly try out the hybrid parallelism provided by Colossal-AI.
You can change the parameters below to try out different settings in the config.py
.
# parallel setting
TENSOR_PARALLEL_SIZE = 2
TENSOR_PARALLEL_MODE = '1d'
parallel = dict(
pipeline=2,
tensor=dict(mode=TENSOR_PARALLEL_MODE, size=TENSOR_PARALLEL_SIZE),
)
🚀 Quick Start
-
Install PyTorch
-
Install the dependencies.
pip install -r requirements.txt
- Run the training scripts with synthetic data.
colossalai run --nproc_per_node 4 train.py --config config.py
- Modify the config file to play with different types of tensor parallelism, for example, change tensor parallel size to be 4 and mode to be 2d and run on 8 GPUs.