ColossalAI/applications/Chat/coati/trainer/rm.py

126 lines
5.2 KiB
Python

from datetime import datetime
from typing import Callable, List
import pandas as pd
import torch
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
from .base import Trainer
from .callbacks import Callback
from .strategies import Strategy
from .utils import is_rank_0
class RewardModelTrainer(Trainer):
"""
Trainer to use while training reward model.
Args:
model (torch.nn.Module): the model to train
strategy (Strategy): the strategy to use for training
optim (Optimizer): the optimizer to use for training
lr_scheduler (_LRScheduler): the lr scheduler to use for training
loss_fn (callable): the loss function to use for training
train_dataloader (DataLoader): the dataloader to use for training
valid_dataloader (DataLoader): the dataloader to use for validation
eval_dataloader (DataLoader): the dataloader to use for evaluation
batch_size (int, defaults to 1): the batch size while training
max_epochs (int, defaults to 2): the number of epochs to train
callbacks (List[Callback], defaults to []): the callbacks to call during training process
"""
def __init__(
self,
model,
strategy: Strategy,
optim: Optimizer,
lr_scheduler: _LRScheduler,
loss_fn: Callable,
train_dataloader: DataLoader,
valid_dataloader: DataLoader,
eval_dataloader: DataLoader,
max_epochs: int = 1,
callbacks: List[Callback] = [],
) -> None:
super().__init__(strategy, max_epochs, callbacks=callbacks)
self.train_dataloader = train_dataloader
self.valid_dataloader = valid_dataloader
self.eval_dataloader = eval_dataloader
self.model = model
self.loss_fn = loss_fn
self.optimizer = optim
self.scheduler = lr_scheduler
def eval_acc(self, dataloader):
dist = 0
on = 0
cnt = 0
self.model.eval()
with torch.no_grad():
for chosen_ids, c_mask, reject_ids, r_mask in dataloader:
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
for i in range(len(chosen_reward)):
cnt += 1
if chosen_reward[i] > reject_reward[i]:
on += 1
dist += (chosen_reward - reject_reward).mean().item()
dist_mean = dist / len(dataloader)
acc = on / cnt
self.model.train()
return dist_mean, acc
def fit(self):
time = datetime.now()
epoch_bar = tqdm(range(self.max_epochs), desc='Train epoch', disable=not is_rank_0())
for epoch in range(self.max_epochs):
step_bar = tqdm(range(self.train_dataloader.__len__()),
desc='Train step of epoch %d' % epoch,
disable=not is_rank_0())
# train
self.model.train()
cnt = 0
acc = 0
dist = 0
for chosen_ids, c_mask, reject_ids, r_mask in self.train_dataloader:
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
loss = self.loss_fn(chosen_reward, reject_reward)
self.strategy.backward(loss, self.model, self.optimizer)
self.strategy.optimizer_step(self.optimizer)
self.optimizer.zero_grad()
cnt += 1
if cnt == 100:
self.scheduler.step()
dist, acc = self.eval_acc(self.valid_dataloader)
cnt = 0
if is_rank_0():
log = pd.DataFrame([[step_bar.n, loss.item(), dist, acc]],
columns=['step', 'loss', 'dist', 'acc'])
log.to_csv('log_%s.csv' % time, mode='a', header=False, index=False)
step_bar.update()
step_bar.set_postfix({'dist': dist, 'acc': acc})
# eval
dist, acc = self.eval_acc(self.eval_dataloader)
if is_rank_0():
log = pd.DataFrame([[step_bar.n, loss.item(), dist, acc]],
columns=['step', 'loss', 'dist', 'acc'])
log.to_csv('log.csv', mode='a', header=False, index=False)
epoch_bar.update()
step_bar.set_postfix({'dist': dist, 'acc': acc})
step_bar.close()