mirror of https://github.com/hpcaitech/ColossalAI
43 lines
1.1 KiB
Python
43 lines
1.1 KiB
Python
import pytest
|
|
import torch
|
|
import transformers
|
|
from topo_utils import split_model_and_get_DAG, check_topo, MLP
|
|
|
|
BATCH_SIZE = 1
|
|
SEQ_LENGHT = 16
|
|
|
|
def test_opt():
|
|
MODEL_LIST = [
|
|
MLP,
|
|
transformers.OPTModel,
|
|
]
|
|
|
|
CONFIGS = [
|
|
{'dim': 10, 'layers': 12},
|
|
transformers.OPTConfig(vocab_size=100, hidden_size=128, num_hidden_layers=4, num_attention_heads=4),
|
|
]
|
|
|
|
def data_gen_MLP():
|
|
x = torch.zeros((16, 10))
|
|
kwargs = dict(x=x)
|
|
return kwargs
|
|
|
|
def data_gen_OPT():
|
|
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
|
|
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
|
|
kwargs = dict(input_ids=input_ids, attention_mask=attention_mask)
|
|
return kwargs
|
|
|
|
DATAGEN = [
|
|
data_gen_MLP,
|
|
data_gen_OPT,
|
|
]
|
|
|
|
for i, model_cls in enumerate(MODEL_LIST):
|
|
model = model_cls(config=CONFIGS[i])
|
|
top_mod, topo = split_model_and_get_DAG(model, DATAGEN[i])
|
|
# print(f'{top_mod=}\n----\n{topo=}')
|
|
check_topo(top_mod, topo)
|
|
|
|
if __name__ == '__main__':
|
|
test_opt() |