mirror of https://github.com/hpcaitech/ColossalAI
39 lines
732 B
Python
39 lines
732 B
Python
from colossalai.amp import AMP_TYPE
|
|
|
|
DATA_PATH = ''
|
|
VOCAB_FILE_PATH = ''
|
|
|
|
# hyper-parameters
|
|
TRAIN_ITERS = 1000000
|
|
DECAY_ITERS = 990000
|
|
WARMUP_FRACTION = 0.01
|
|
GLOBAL_BATCH_SIZE = 32 # dp world size * sentences per GPU
|
|
EVAL_ITERS = 10
|
|
EVAL_INTERVAL = 10
|
|
LR = 0.0001
|
|
MIN_LR = 1e-05
|
|
WEIGHT_DECAY = 0.01
|
|
SEQ_LENGTH = 512
|
|
|
|
# BERT config
|
|
DEPTH = 12
|
|
NUM_ATTENTION_HEADS = 12
|
|
HIDDEN_SIZE = 768
|
|
|
|
# model config
|
|
ADD_BINARY_HEAD = False
|
|
|
|
# random seed
|
|
SEED = 1234
|
|
|
|
# pipeline config
|
|
# only enabled when pipeline > 1
|
|
NUM_MICRO_BATCHES = 4
|
|
|
|
# colossalai config
|
|
parallel = dict(pipeline=1, tensor=dict(size=2, mode='sequence'))
|
|
|
|
fp16 = dict(mode=AMP_TYPE.NAIVE, verbose=True)
|
|
|
|
gradient_handler = [dict(type='SequenceParallelGradientHandler')]
|