mirror of https://github.com/hpcaitech/ColossalAI
51 lines
1.6 KiB
Python
51 lines
1.6 KiB
Python
import torch
|
|
import torch.distributed as dist
|
|
|
|
from colossalai.gemini.chunk import Chunk
|
|
from colossalai.utils import get_current_device
|
|
|
|
|
|
def get_temp_total_chunk_on_cuda(chunk: Chunk):
|
|
if chunk.is_gathered:
|
|
return chunk.cuda_global_chunk
|
|
|
|
if chunk.cuda_shard is not None:
|
|
shard_temp = chunk.cuda_shard
|
|
else:
|
|
shard_temp = chunk.cpu_shard.to(get_current_device())
|
|
|
|
total_temp = torch.zeros(chunk.chunk_size, dtype=chunk.dtype, device=get_current_device())
|
|
gather_list = list(torch.chunk(input=total_temp, chunks=chunk.pg_size, dim=0))
|
|
dist.all_gather(tensor_list=gather_list, tensor=shard_temp, group=chunk.torch_pg)
|
|
|
|
return total_temp
|
|
|
|
|
|
# TODO() not work for module where two params share the same tensor.
|
|
def _add_param(model, name, param):
|
|
name_list = name.split('.')
|
|
module = model._modules[name_list[0]]
|
|
for i in range(1, len(name_list) - 1):
|
|
module = module._modules[name_list[i]]
|
|
module._parameters[name_list[-1]] = param
|
|
|
|
|
|
def convert_to_torch_module(gemini_ddp_model: 'GeminiDDP') -> torch.nn.Module:
|
|
"""convert_to_torch_module
|
|
|
|
Args:
|
|
gemini_ddp_model (GeminiDDP): a gemini ddp model
|
|
|
|
Returns:
|
|
torch.nn.Module: a torch model contains the params of gemini_ddp_model
|
|
"""
|
|
from colossalai.nn.parallel import GeminiDDP
|
|
assert isinstance(gemini_ddp_model, GeminiDDP)
|
|
module = gemini_ddp_model.module
|
|
|
|
# replace ColoTensor to torch.nn.Tensor in module
|
|
for n, p in gemini_ddp_model.torch_named_parameters():
|
|
_add_param(module, n, p)
|
|
|
|
return module
|