mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
393 lines
14 KiB
393 lines
14 KiB
import math
|
|
|
|
import torch
|
|
|
|
try:
|
|
import triton
|
|
import triton.language as tl
|
|
HAS_TRITON = True
|
|
except ImportError:
|
|
HAS_TRITON = False
|
|
print("please install triton from https://github.com/openai/triton")
|
|
|
|
if HAS_TRITON:
|
|
"""
|
|
this function is modified from
|
|
https://github.com/ModelTC/lightllm/blob/f093edc20683ac3ea1bca3fb5d8320a0dd36cf7b/lightllm/models/llama/triton_kernel/context_flashattention_nopad.py#L10
|
|
"""
|
|
if triton.__version__ < "2.1.0":
|
|
@triton.jit
|
|
def _context_flash_attention_kernel(
|
|
Q,
|
|
K,
|
|
V,
|
|
sm_scale,
|
|
B_Start_Loc,
|
|
B_Seqlen,
|
|
TMP,
|
|
alibi_ptr,
|
|
Out,
|
|
stride_qbs,
|
|
stride_qh,
|
|
stride_qd,
|
|
stride_kbs,
|
|
stride_kh,
|
|
stride_kd,
|
|
stride_vbs,
|
|
stride_vh,
|
|
stride_vd,
|
|
stride_obs,
|
|
stride_oh,
|
|
stride_od,
|
|
stride_tmp_b,
|
|
stride_tmp_h,
|
|
stride_tmp_s,
|
|
# suggtest set-up 64, 128, 256, 512
|
|
BLOCK_M: tl.constexpr,
|
|
BLOCK_DMODEL: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
):
|
|
batch_id = tl.program_id(0)
|
|
cur_head = tl.program_id(1)
|
|
start_m = tl.program_id(2)
|
|
|
|
# initialize offsets
|
|
offs_n = tl.arange(0, BLOCK_N)
|
|
offs_d = tl.arange(0, BLOCK_DMODEL)
|
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
|
|
# get batch info
|
|
cur_batch_seq_len = tl.load(B_Seqlen + batch_id)
|
|
cur_batch_start_index = tl.load(B_Start_Loc + batch_id)
|
|
block_start_loc = BLOCK_M * start_m
|
|
|
|
load_p_ptrs = (
|
|
Q
|
|
+ (cur_batch_start_index + offs_m[:, None]) * stride_qbs
|
|
+ cur_head * stride_qh
|
|
+ offs_d[None, :] * stride_qd
|
|
)
|
|
q = tl.load(load_p_ptrs, mask=offs_m[:, None] < cur_batch_seq_len, other=0.0)
|
|
|
|
k_ptrs = K + offs_n[None, :] * stride_kbs + cur_head * stride_kh + offs_d[:, None] * stride_kd
|
|
v_ptrs = V + offs_n[:, None] * stride_vbs + cur_head * stride_vh + offs_d[None, :] * stride_vd
|
|
t_ptrs = TMP + batch_id * stride_tmp_b + cur_head * stride_tmp_h + offs_m * stride_tmp_s
|
|
|
|
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
|
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
|
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
|
|
|
if alibi_ptr is not None:
|
|
alibi_m = tl.load(alibi_ptr + cur_head)
|
|
|
|
block_mask = tl.where(block_start_loc < cur_batch_seq_len, 1, 0)
|
|
|
|
for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N):
|
|
start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
k = tl.load(
|
|
k_ptrs + (cur_batch_start_index + start_n) * stride_kbs,
|
|
mask=(start_n + offs_n[None, :]) < cur_batch_seq_len,
|
|
other=0.0,
|
|
)
|
|
|
|
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
|
qk += tl.dot(q, k)
|
|
qk *= sm_scale
|
|
|
|
if alibi_ptr is not None:
|
|
alibi_loc = offs_m[:, None] - (start_n + offs_n[None, :])
|
|
qk -= alibi_loc * alibi_m
|
|
|
|
qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf"))
|
|
|
|
m_ij = tl.max(qk, 1)
|
|
p = tl.exp(qk - m_ij[:, None])
|
|
l_ij = tl.sum(p, 1)
|
|
# -- update m_i and l_i
|
|
m_i_new = tl.maximum(m_i, m_ij)
|
|
alpha = tl.exp(m_i - m_i_new)
|
|
beta = tl.exp(m_ij - m_i_new)
|
|
l_i_new = alpha * l_i + beta * l_ij
|
|
# -- update output accumulator --
|
|
# scale p
|
|
p_scale = beta / l_i_new
|
|
p = p * p_scale[:, None]
|
|
# scale acc
|
|
acc_scale = l_i / l_i_new * alpha
|
|
tl.store(t_ptrs, acc_scale)
|
|
acc_scale = tl.load(t_ptrs)
|
|
acc = acc * acc_scale[:, None]
|
|
# update acc
|
|
v = tl.load(
|
|
v_ptrs + (cur_batch_start_index + start_n) * stride_vbs,
|
|
mask=(start_n + offs_n[:, None]) < cur_batch_seq_len,
|
|
other=0.0,
|
|
)
|
|
|
|
p = p.to(v.dtype)
|
|
acc += tl.dot(p, v)
|
|
# update m_i and l_i
|
|
l_i = l_i_new
|
|
m_i = m_i_new
|
|
|
|
off_o = (
|
|
(cur_batch_start_index + offs_m[:, None]) * stride_obs + cur_head * stride_oh + offs_d[None, :] * stride_od
|
|
)
|
|
out_ptrs = Out + off_o
|
|
tl.store(out_ptrs, acc, mask=offs_m[:, None] < cur_batch_seq_len)
|
|
return
|
|
else:
|
|
# this function is modified from https://github.com/ModelTC/lightllm/blob/main/lightllm/models/llama/triton_kernel/context_flashattention_nopad.py#L11
|
|
@triton.jit
|
|
def _context_flash_attention_kernel_2(
|
|
Q, K, V, sm_scale, Alibi, B_Start_Loc, B_Seqlen,
|
|
Out,
|
|
kv_group_num,
|
|
stride_qbs, stride_qh, stride_qd,
|
|
stride_kbs, stride_kh, stride_kd,
|
|
stride_vbs, stride_vh, stride_vd,
|
|
stride_obs, stride_oh, stride_od,
|
|
BLOCK_M: tl.constexpr, BLOCK_DMODEL: tl.constexpr,
|
|
BLOCK_N: tl.constexpr,
|
|
):
|
|
cur_batch = tl.program_id(0)
|
|
cur_head = tl.program_id(1)
|
|
start_m = tl.program_id(2)
|
|
|
|
if kv_group_num is not None:
|
|
cur_kv_head = cur_head // kv_group_num
|
|
|
|
cur_batch_seq_len = tl.load(B_Seqlen + cur_batch)
|
|
cur_batch_in_all_start_index = tl.load(B_Start_Loc + cur_batch)
|
|
|
|
block_start_loc = BLOCK_M * start_m
|
|
|
|
# initialize offsets
|
|
offs_n = tl.arange(0, BLOCK_N)
|
|
offs_d = tl.arange(0, BLOCK_DMODEL)
|
|
offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
|
off_q = (cur_batch_in_all_start_index + offs_m[:, None]) * stride_qbs + cur_head * stride_qh + offs_d[None, :] * stride_qd
|
|
if kv_group_num is None or kv_group_num == 1:
|
|
off_k = offs_n[None, :] * stride_kbs + cur_head * stride_kh + offs_d[:, None] * stride_kd
|
|
off_v = offs_n[:, None] * stride_vbs + cur_head * stride_vh + offs_d[None, :] * stride_vd
|
|
else:
|
|
off_k = offs_n[None, :] * stride_kbs + cur_kv_head * stride_kh + offs_d[:, None] * stride_kd
|
|
off_v = offs_n[:, None] * stride_vbs + cur_kv_head * stride_vh + offs_d[None, :] * stride_vd
|
|
|
|
q = tl.load(Q + off_q, mask=offs_m[:, None] < cur_batch_seq_len, other=0.0)
|
|
|
|
k_ptrs = K + off_k
|
|
v_ptrs = V + off_v
|
|
|
|
m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
|
|
l_i = tl.zeros([BLOCK_M], dtype=tl.float32)
|
|
acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
|
|
|
|
if Alibi is not None:
|
|
alibi_m = tl.load(Alibi + cur_head)
|
|
|
|
block_mask = tl.where(block_start_loc < cur_batch_seq_len, 1, 0)
|
|
|
|
for start_n in range(0, block_mask * (start_m + 1) * BLOCK_M, BLOCK_N):
|
|
start_n = tl.multiple_of(start_n, BLOCK_N)
|
|
# -- compute qk ----
|
|
k = tl.load(k_ptrs + (cur_batch_in_all_start_index + start_n) * stride_kbs,
|
|
mask=(start_n + offs_n[None, :]) < cur_batch_seq_len, other=0.0)
|
|
|
|
qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
|
|
qk += tl.dot(q, k)
|
|
qk *= sm_scale
|
|
|
|
if Alibi is not None:
|
|
alibi_loc = offs_m[:, None] - (start_n + offs_n[None, :])
|
|
qk -= alibi_loc * alibi_m
|
|
|
|
qk = tl.where(offs_m[:, None] >= (start_n + offs_n[None, :]), qk, float("-inf"))
|
|
|
|
m_ij = tl.max(qk, 1)
|
|
p = tl.exp(qk - m_ij[:, None])
|
|
l_ij = tl.sum(p, 1)
|
|
# -- update m_i and l_i
|
|
m_i_new = tl.maximum(m_i, m_ij)
|
|
alpha = tl.exp(m_i - m_i_new)
|
|
beta = tl.exp(m_ij - m_i_new)
|
|
l_i_new = alpha * l_i + beta * l_ij
|
|
# -- update output accumulator --
|
|
# scale p
|
|
p_scale = beta / l_i_new
|
|
p = p * p_scale[:, None]
|
|
# scale acc
|
|
acc_scale = l_i / l_i_new * alpha
|
|
acc = acc * acc_scale[:, None]
|
|
# update acc
|
|
v = tl.load(v_ptrs + (cur_batch_in_all_start_index + start_n) * stride_vbs,
|
|
mask=(start_n + offs_n[:, None]) < cur_batch_seq_len, other=0.0)
|
|
|
|
p = p.to(v.dtype)
|
|
acc += tl.dot(p, v)
|
|
# update m_i and l_i
|
|
l_i = l_i_new
|
|
m_i = m_i_new
|
|
# initialize pointers to output
|
|
off_o = (cur_batch_in_all_start_index + offs_m[:, None]) * stride_obs + cur_head * stride_oh + offs_d[None, :] * stride_od
|
|
out_ptrs = Out + off_o
|
|
tl.store(out_ptrs, acc, mask=offs_m[:, None] < cur_batch_seq_len)
|
|
return
|
|
|
|
@torch.no_grad()
|
|
def bloom_context_attn_fwd(q, k, v, o, b_start_loc, b_seq_len, max_input_len, alibi=None):
|
|
BLOCK = 128
|
|
# shape constraints
|
|
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
|
assert Lq == Lk, "context process only supports equal query, key, value length"
|
|
assert Lk == Lv, "context process only supports equal query, key, value length"
|
|
assert Lk in {16, 32, 64, 128}
|
|
|
|
sm_scale = 1.0 / math.sqrt(Lk)
|
|
batch, head = b_seq_len.shape[0], q.shape[1]
|
|
|
|
grid = (batch, head, triton.cdiv(max_input_len, BLOCK))
|
|
|
|
num_warps = 4 if Lk <= 64 else 8
|
|
|
|
if triton.__version__ < "2.1.0":
|
|
tmp = torch.empty((batch, head, max_input_len + 256), device=q.device, dtype=torch.float32)
|
|
_context_flash_attention_kernel[grid](
|
|
q,
|
|
k,
|
|
v,
|
|
sm_scale,
|
|
b_start_loc,
|
|
b_seq_len,
|
|
tmp,
|
|
alibi,
|
|
o,
|
|
q.stride(0),
|
|
q.stride(1),
|
|
q.stride(2),
|
|
k.stride(0),
|
|
k.stride(1),
|
|
k.stride(2),
|
|
v.stride(0),
|
|
v.stride(1),
|
|
v.stride(2),
|
|
o.stride(0),
|
|
o.stride(1),
|
|
o.stride(2),
|
|
tmp.stride(0),
|
|
tmp.stride(1),
|
|
tmp.stride(2),
|
|
# manually setting this blcok num, we can use tuning config to futher speed-up
|
|
BLOCK_M=BLOCK,
|
|
BLOCK_DMODEL=Lk,
|
|
BLOCK_N=BLOCK,
|
|
num_warps=num_warps,
|
|
num_stages=1,
|
|
)
|
|
else:
|
|
_context_flash_attention_kernel_2[grid](
|
|
q, k, v, sm_scale, alibi, b_start_loc, b_seq_len,
|
|
o,
|
|
None,
|
|
q.stride(0),
|
|
q.stride(1),
|
|
q.stride(2),
|
|
k.stride(0),
|
|
k.stride(1),
|
|
k.stride(2),
|
|
v.stride(0),
|
|
v.stride(1),
|
|
v.stride(2),
|
|
o.stride(0),
|
|
o.stride(1),
|
|
o.stride(2),
|
|
BLOCK_M=BLOCK,
|
|
BLOCK_DMODEL=Lk,
|
|
BLOCK_N=BLOCK,
|
|
num_warps=num_warps,
|
|
num_stages=1,
|
|
)
|
|
|
|
return
|
|
|
|
@torch.no_grad()
|
|
def llama_context_attn_fwd(q, k, v, o, b_start_loc, b_seq_len, max_input_len):
|
|
BLOCK = 128
|
|
# shape constraints
|
|
Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
|
|
assert Lq == Lk, "context process only supports equal query, key, value length"
|
|
assert Lk == Lv, "context process only supports equal query, key, value length"
|
|
assert Lk in {16, 32, 64, 128}
|
|
|
|
sm_scale = 1.0 / math.sqrt(Lk)
|
|
batch, head = b_seq_len.shape[0], q.shape[1]
|
|
|
|
grid = (batch, head, triton.cdiv(max_input_len, BLOCK))
|
|
|
|
tmp = torch.empty((batch, head, max_input_len + 256), device=q.device, dtype=torch.float32)
|
|
num_warps = 4 if Lk <= 64 else 8
|
|
# num_warps = 4
|
|
|
|
if triton.__version__ < "2.1.0":
|
|
_context_flash_attention_kernel[grid](
|
|
q,
|
|
k,
|
|
v,
|
|
sm_scale,
|
|
b_start_loc,
|
|
b_seq_len,
|
|
tmp,
|
|
None,
|
|
o,
|
|
q.stride(0),
|
|
q.stride(1),
|
|
q.stride(2),
|
|
k.stride(0),
|
|
k.stride(1),
|
|
k.stride(2),
|
|
v.stride(0),
|
|
v.stride(1),
|
|
v.stride(2),
|
|
o.stride(0),
|
|
o.stride(1),
|
|
o.stride(2),
|
|
tmp.stride(0),
|
|
tmp.stride(1),
|
|
tmp.stride(2),
|
|
BLOCK_M=BLOCK,
|
|
BLOCK_DMODEL=Lk,
|
|
BLOCK_N=BLOCK,
|
|
num_warps=num_warps,
|
|
num_stages=1,
|
|
)
|
|
else:
|
|
kv_group_num = q.shape[1] // k.shape[1]
|
|
_context_flash_attention_kernel_2[grid](
|
|
q,
|
|
k,
|
|
v,
|
|
sm_scale,
|
|
None,
|
|
b_start_loc,
|
|
b_seq_len,
|
|
o,
|
|
kv_group_num,
|
|
q.stride(0),
|
|
q.stride(1),
|
|
q.stride(2),
|
|
k.stride(0),
|
|
k.stride(1),
|
|
k.stride(2),
|
|
v.stride(0),
|
|
v.stride(1),
|
|
v.stride(2),
|
|
o.stride(0),
|
|
o.stride(1),
|
|
o.stride(2),
|
|
BLOCK_M=BLOCK,
|
|
BLOCK_DMODEL=Lk,
|
|
BLOCK_N=BLOCK,
|
|
num_warps=num_warps,
|
|
num_stages=1,)
|
|
|
|
return |