mirror of https://github.com/hpcaitech/ColossalAI
106 lines
3.7 KiB
Python
106 lines
3.7 KiB
Python
from functools import partial
|
|
import pytest
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.multiprocessing as mp
|
|
import colossalai
|
|
from colossalai.context import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.utils import free_port, get_current_device
|
|
from colossalai.nn.layer.moe import Top1Router, Top2Router, MoeLayer, Experts
|
|
from colossalai.context.moe_context import MOE_CONTEXT
|
|
from colossalai.testing import rerun_if_address_is_in_use
|
|
|
|
BATCH_SIZE = 16
|
|
NUM_EXPERTS = 4
|
|
CONFIG = dict()
|
|
|
|
|
|
def check_equal(tensor_a, tensor_b, atol=1e-06):
|
|
assert torch.allclose(tensor_a, tensor_b, rtol=0, atol=atol) is True
|
|
|
|
|
|
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32, router=Top2Router):
|
|
# Here we do not need TF32, since it brings absolute error on results
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
local_rank = gpc.get_local_rank(ParallelMode.GLOBAL)
|
|
|
|
MOE_CONTEXT.setup(42) # MOE environment initialization
|
|
MOE_CONTEXT.reset_loss()
|
|
torch.manual_seed(rs + local_rank) # set each process has different random seed
|
|
|
|
# get randomized data
|
|
tokens = torch.randn(BATCH_SIZE, hidden_size, dtype=data_type, device=get_current_device(), requires_grad=True)
|
|
|
|
expert_module = nn.Linear
|
|
expert_factor = dict(in_features=hidden_size, out_features=hidden_size, device=get_current_device())
|
|
expert = Experts(expert_module, NUM_EXPERTS, **expert_factor)
|
|
layer = MoeLayer(hidden_size, NUM_EXPERTS, router(capacity_factor_train=1.0), expert)
|
|
layer = layer.to(get_current_device())
|
|
if data_type == torch.float16:
|
|
layer = layer.half()
|
|
|
|
# use matrix multiplication instead of COL_MOE_KERNL in MOE dispatch and combine
|
|
layer.use_kernel = False
|
|
old_out = layer(tokens)
|
|
ech = old_out.shape
|
|
grad = torch.randn(ech, device=get_current_device())
|
|
old_out.backward(grad) # get gradient
|
|
|
|
# save all results
|
|
o_tk_grad = tokens.grad.data.clone()
|
|
o_gt_grad = layer.gate_weight.grad.data.clone()
|
|
|
|
# reset all gradients
|
|
tokens.grad.zero_()
|
|
layer.gate_weight.grad.zero_()
|
|
|
|
layer.use_kernel = True
|
|
new_out = layer(tokens) # get ouputs through colossal kernel
|
|
|
|
if data_type == torch.float32:
|
|
check_equal(old_out, new_out)
|
|
else:
|
|
check_equal(old_out, new_out, 1e-2)
|
|
# forward function passed
|
|
|
|
new_out.backward(grad) # get new type gradient
|
|
n_tk_grad = tokens.grad.data.clone()
|
|
n_gt_grad = layer.gate_weight.grad.data.clone()
|
|
|
|
if data_type == torch.float32:
|
|
check_equal(o_tk_grad, n_tk_grad)
|
|
else:
|
|
check_equal(o_tk_grad, o_tk_grad, 1e-2)
|
|
# tokens gradient is correct
|
|
|
|
if data_type == torch.float32:
|
|
check_equal(o_gt_grad, n_gt_grad, 5e-05)
|
|
else:
|
|
check_equal(o_gt_grad, n_gt_grad, 2e-01)
|
|
# bias gradient is correct
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize("rs", [131])
|
|
@pytest.mark.parametrize("hidden_size", [32, 144])
|
|
@pytest.mark.parametrize("data_type", [torch.float32, torch.float16])
|
|
@pytest.mark.parametrize("router", [Top1Router, Top2Router])
|
|
@rerun_if_address_is_in_use()
|
|
def test_moe_kernel(rs, hidden_size, data_type, router):
|
|
world_size = 4
|
|
run_func = partial(run_routing,
|
|
world_size=world_size,
|
|
port=free_port(),
|
|
rs=rs,
|
|
hidden_size=hidden_size,
|
|
data_type=data_type,
|
|
router=router)
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_moe_kernel(2, 256, torch.float16, Top2Router)
|