ColossalAI/tests/test_auto_parallel/test_linear_handler_v2.py

105 lines
4.1 KiB
Python

from colossalai.fx.tracer.meta_patch.patched_module import linear
import torch
import torch.nn as nn
from colossalai.fx import ColoTracer, ColoGraphModule
from colossalai.auto_parallel.solver.op_handler.dot_handler_v2 import LinearModuleHandler, LinearFunctionHandler
from colossalai.auto_parallel.solver.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
def test_linear_module_handler():
model = nn.Sequential(nn.Linear(10, 20).to('meta'))
tracer = ColoTracer()
graph = tracer.trace(model, meta_args={"input": torch.rand(4, 10).to('meta')})
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
print(graph)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
linear_mod_node = list(graph.nodes)[1]
strategies_vector = StrategiesVector(linear_mod_node)
# build handler
handler = LinearModuleHandler(node=linear_mod_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# check operation data mapping
mapping = handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.logical_shape is not None
assert op_data.data is not None
assert mapping['input'].name == "input_1"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([4, 10])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 10])
assert mapping['other'].name == "weight"
assert mapping['other'].data.is_meta
assert mapping['other'].data.shape == torch.Size([20, 10])
assert mapping['other'].type == OperationDataType.PARAM
assert mapping['other'].logical_shape == torch.Size([10, 20])
assert mapping['bias'].name == "bias"
assert mapping['bias'].data.is_meta
assert mapping['bias'].data.shape == torch.Size([20])
assert mapping['bias'].type == OperationDataType.PARAM
assert mapping['other'].logical_shape == torch.Size([10, 20])
assert mapping['output'].name == "_0"
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([4, 20])
assert mapping['output'].type == OperationDataType.OUTPUT
def test_linear_function_handler():
model = nn.Linear(10, 20).to('meta')
tracer = ColoTracer()
graph = tracer.trace(model, meta_args={"input": torch.rand(4, 10).to('meta')})
gm = ColoGraphModule(model, graph)
physical_mesh_id = torch.arange(0, 4)
print(graph)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
linear_func_node = list(graph.nodes)[3]
strategies_vector = StrategiesVector(linear_func_node)
# build handler
handler = LinearFunctionHandler(node=linear_func_node, device_mesh=device_mesh, strategies_vector=strategies_vector)
# # check operation data mapping
mapping = handler.get_operation_data_mapping()
assert mapping['input'].name == "input_1"
assert mapping['input'].data.is_meta
assert mapping['input'].data.shape == torch.Size([4, 10])
assert mapping['input'].type == OperationDataType.ARG
assert mapping['input'].logical_shape == torch.Size([4, 10])
assert mapping['other'].name == "weight"
assert mapping['other'].data.is_meta
assert mapping['other'].data.shape == torch.Size([20, 10])
assert mapping['other'].type == OperationDataType.ARG
assert mapping['other'].logical_shape == torch.Size([10, 20])
assert mapping['bias'].name == "bias"
assert mapping['bias'].data.is_meta
assert mapping['bias'].data.shape == torch.Size([20])
assert mapping['bias'].type == OperationDataType.ARG
assert mapping['other'].logical_shape == torch.Size([10, 20])
assert mapping['output'].name == "linear"
assert mapping['output'].data.is_meta
assert mapping['output'].data.shape == torch.Size([4, 20])
assert mapping['output'].type == OperationDataType.OUTPUT
if __name__ == '__main__':
# test_linear_module_handler()
test_linear_function_handler()