ColossalAI/colossalai/fx/passes/meta_info_prop.py

239 lines
9.3 KiB
Python

from dataclasses import asdict
from colossalai.fx.profiler import GraphInfo
import torch
import torch.fx
from torch.fx.node import Node, Argument, Target
from torch.utils._pytree import tree_map
from typing import Any, Tuple, NamedTuple, Dict
from torch.fx._compatibility import compatibility
from colossalai.fx.profiler import profile_function, profile_module, profile_method, activation_size
@compatibility(is_backward_compatible=True)
class TensorMetadata(NamedTuple):
# TensorMetadata is a structure containing pertinent information
# about a tensor within a PyTorch program.
shape: torch.Size
dtype: torch.dtype
requires_grad: bool
stride: Tuple[int]
numel: int
is_tensor: bool
# TODO: we can add a list of sharding spec here, and record the sharding
# behaviour by appending sharding spec into list.
def _extract_tensor_metadata(result: torch.Tensor) -> TensorMetadata:
"""
Extract a TensorMetadata NamedTuple describing `result`.
"""
shape = result.shape
dtype = result.dtype
requires_grad = result.requires_grad
stride = result.stride()
numel = result.numel()
is_tensor = True
return TensorMetadata(shape, dtype, requires_grad, stride, numel, is_tensor)
@compatibility(is_backward_compatible=True)
class MetaInfoProp(torch.fx.Interpreter):
"""
Execute an FX graph Node-by-Node with meta tensor and
record the memory usage, FLOPs, and type of the result
into the corresponding node.
Usage:
BATCH_SIZE = 2
DIM_IN = 4
DIM_OUT = 16
model = torch.nn.Linear(DIM_IN, DIM_OUT)
input_sample = torch.rand(BATCH_SIZE, DIM_IN)
orig_output = model(input_sample)
gm = symbolic_trace(model)
MetaInfoProp(gm).run(input_sample)
for node in gm.graph.nodes:
print(node.name, node.meta['tensor_meta'].dtype,
node.meta['tensor_meta'].shape, node.meta['tensor_meta'].numel)
# output of above code is
# input_1 torch.float32 torch.Size([2, 4]) 8
# weight torch.float32 torch.Size([16, 4]) 64
# bias torch.float32 torch.Size([16]) 16
# linear torch.float32 torch.Size([2, 16]) 32
# output torch.float32 torch.Size([2, 16]) 32
Args:
module (GraphModule): The module to be executed
"""
@compatibility(is_backward_compatible=True)
def run_node(self, n: Node) -> Any:
"""
Run a specific node ``n`` and return the result.
Calls into placeholder, get_attr, call_function,
call_method, call_module, or output depending
on ``node.op``
Args:
n (Node): The Node to execute
Returns:
Any: The result of executing ``n``
"""
result, meta_info = super().run_node(n)
def extract_tensor_meta(obj):
if isinstance(obj, torch.Tensor):
return _extract_tensor_metadata(obj)
else:
return TensorMetadata(None, None, False, None, 0, False)
tensor_meta = tree_map(extract_tensor_meta, result)
n.meta['tensor_meta'] = tensor_meta
n.meta = {**n.meta, **asdict(meta_info)} # extend MetaInfo to `n.meta`
# TODO: the attribute node_size should be removed in the future
setattr(n, 'node_size', n.meta.get('fwd_mem_tmp', 0) + n.meta.get('fwd_mem_out', 0))
n.meta['type'] = type(result)
# retain the autograd graph
for param in self.module.parameters():
param.grad = None
return result
# Main Node running APIs
@compatibility(is_backward_compatible=True)
def placeholder(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``placeholder`` node. Note that this is stateful:
``Interpreter`` maintains an internal iterator over
arguments passed to ``run`` and this method returns
next() on that iterator.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Returns:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
return super().placeholder(target, args, kwargs), GraphInfo()
@compatibility(is_backward_compatible=True)
def get_attr(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``get_attr`` node. Will retrieve an attribute
value from the ``Module`` hierarchy of ``self.module``.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
return super().get_attr(target, args, kwargs), GraphInfo()
@compatibility(is_backward_compatible=True)
def call_function(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_function`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
assert not isinstance(target, str)
return profile_function(target)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def call_method(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_method`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
return profile_method(target)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def call_module(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute a ``call_module`` node with meta tensor and return the result and its meta profile.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
# Retrieve executed args and kwargs values from the environment
# Execute the method and return the result
assert isinstance(target, str)
submod = self.fetch_attr(target)
return profile_module(submod)(*args, **kwargs)
@compatibility(is_backward_compatible=True)
def output(self, target: 'Target', args: Tuple[Argument, ...], kwargs: Dict[str, Any]) -> Any:
"""
Execute an ``output`` node. This really just retrieves
the value referenced by the ``output`` node and returns it.
Args:
target (Target): The call target for this node. See
`Node <https://pytorch.org/docs/master/fx.html#torch.fx.Node>`__ for
details on semantics
args (Tuple): Tuple of positional args for this invocation
kwargs (Dict): Dict of keyword arguments for this invocation
Return:
result (Any): The argument value that was retrieved
meta_info (MetaInfo): The memory cost and FLOPs estimated with `MetaTensor`.
"""
return args[0], GraphInfo(save_fwd_in=True)
def propagate(self, *args):
"""
Run `module` via interpretation and return the result and
record the shape and type of each node.
Args:
*args (Tensor): the sample input.
Returns:
Any: The value returned from executing the Module
"""
return super().run(*args)