mirror of https://github.com/hpcaitech/ColossalAI
269 lines
7.2 KiB
Python
269 lines
7.2 KiB
Python
import math
|
|
|
|
|
|
def _discretize(mem_unit, values):
|
|
return [math.ceil(value / mem_unit) for value in values]
|
|
|
|
|
|
class Chain:
|
|
|
|
def __init__(self, fw, bw, cw, cbw, ftmp, btmp, check=True):
|
|
self.fweight = fw
|
|
self.bweight = bw
|
|
self.cweight = cw
|
|
self.cbweight = cbw
|
|
self.fwd_mem_tmp = ftmp
|
|
self.bwd_mem_tmp = btmp
|
|
self.length = len(fw)
|
|
if check and not self.check_lengths():
|
|
raise AttributeError("In Chain, input lists do not have consistent lengths")
|
|
|
|
def check_lengths(self):
|
|
return ((len(self.fweight) == self.length) and (len(self.bweight) == self.length + 1)
|
|
and (len(self.cweight) == self.length + 1) and (len(self.fwd_mem_tmp) == self.length)
|
|
and (len(self.bwd_mem_tmp) == self.length + 1) and (len(self.cbweight) == self.length + 1))
|
|
|
|
def __repr__(self):
|
|
chain_list = []
|
|
for i in range(self.length):
|
|
chain_list.append((self.fweight[i], self.bweight[i], self.cweight[i], self.cbweight[i], self.fwd_mem_tmp[i],
|
|
self.bwd_mem_tmp[i]))
|
|
i = self.length
|
|
chain_list.append((None, self.bweight[i], self.cweight[i], self.cbweight[i], None, self.bwd_mem_tmp[i]))
|
|
return chain_list.__repr__()
|
|
|
|
def _discretize(self, mem_unit):
|
|
self.cweight = _discretize(mem_unit, self.cweight)
|
|
self.cbweight = _discretize(mem_unit, self.cbweight)
|
|
self.fwd_mem_tmp = _discretize(mem_unit, self.fwd_mem_tmp)
|
|
self.bwd_mem_tmp = _discretize(mem_unit, self.bwd_mem_tmp)
|
|
|
|
|
|
class Operation:
|
|
|
|
def shift(self, value):
|
|
if type(self.index) is tuple:
|
|
self.index = tuple(x + value for x in self.index)
|
|
else:
|
|
self.index += value
|
|
|
|
|
|
class Offload(Operation):
|
|
|
|
def __init__(self, index, has_bar=False) -> None:
|
|
super().__init__()
|
|
self.index = index
|
|
self.name = "Off"
|
|
if has_bar:
|
|
self.name += "wBar"
|
|
|
|
def __repr__(self):
|
|
return f"{self.name}_{self.index}"
|
|
|
|
|
|
class Prefetch(Operation):
|
|
|
|
def __init__(self, index, has_bar=False) -> None:
|
|
super().__init__()
|
|
self.index = index
|
|
self.name = "Pre"
|
|
if has_bar:
|
|
self.name += "wBar"
|
|
|
|
def __repr__(self):
|
|
return f"{self.name}_{self.index}"
|
|
|
|
|
|
class Forward(Operation):
|
|
|
|
def __init__(self, index):
|
|
self.index = index
|
|
self.name = "F"
|
|
|
|
def __repr__(self):
|
|
return "{n}_{i}".format(n=self.name, i=self.index)
|
|
|
|
def cost(self, chain: Chain):
|
|
if chain is not None:
|
|
return chain.fweight[self.index]
|
|
else:
|
|
return 1
|
|
|
|
|
|
class ForwardEnable(Forward):
|
|
|
|
def __init__(self, index):
|
|
super().__init__(index)
|
|
self.name = "Fe"
|
|
|
|
|
|
class ForwardNograd(Forward):
|
|
|
|
def __init__(self, index):
|
|
super().__init__(index)
|
|
self.name = "Fn"
|
|
|
|
|
|
class ForwardCheck(Forward):
|
|
|
|
def __init__(self, index):
|
|
super().__init__(index)
|
|
self.name = "CF"
|
|
|
|
|
|
class Forwards(Operation):
|
|
|
|
def __init__(self, start, end):
|
|
self.index = (start, end)
|
|
|
|
def __repr__(self):
|
|
return "F_{i}->{j}".format(i=self.index[0], j=self.index[1])
|
|
|
|
def cost(self, chain: Chain):
|
|
if chain is not None:
|
|
return sum(chain.fweight[self.index[0]:self.index[1] + 1])
|
|
else:
|
|
return (self.index[1] - self.index[0] + 1)
|
|
|
|
|
|
def isForward(op):
|
|
return type(op) is Forward or type(op) is Forwards
|
|
|
|
|
|
class Backward(Operation):
|
|
|
|
def __init__(self, index):
|
|
self.index = index
|
|
|
|
def __repr__(self):
|
|
return "B_{i}".format(i=self.index)
|
|
|
|
def cost(self, chain: Chain):
|
|
if chain is not None:
|
|
return chain.bweight[self.index]
|
|
else:
|
|
return 1
|
|
|
|
|
|
class Loss(Operation):
|
|
|
|
def __init__(self):
|
|
pass
|
|
|
|
def __repr__(self):
|
|
return "L"
|
|
|
|
def cost(self, chain):
|
|
return 0
|
|
|
|
|
|
class MemoryAccess(Operation):
|
|
|
|
def __init__(self, index):
|
|
self.index = index
|
|
|
|
def __repr__(self):
|
|
return "{n}_{i}".format(n=self.name, i=self.index)
|
|
|
|
def cost(self, chain: Chain):
|
|
return 0
|
|
|
|
|
|
class WriteMemory(MemoryAccess):
|
|
|
|
def __init__(self, index):
|
|
super().__init__(index)
|
|
self.name = "WM"
|
|
|
|
|
|
class ReadMemory(MemoryAccess):
|
|
|
|
def __init__(self, index):
|
|
super().__init__(index)
|
|
self.name = "RM"
|
|
|
|
|
|
class DiscardMemory(MemoryAccess):
|
|
|
|
def __init__(self, index):
|
|
super().__init__(index)
|
|
self.name = "DM"
|
|
|
|
|
|
class Function:
|
|
|
|
def __init__(self, name, *args):
|
|
self.name = name
|
|
self.args = args
|
|
self.str_args = ','.join(str(v) for v in self.args)
|
|
|
|
def __repr__(self):
|
|
return "{n}({args})".format(n=self.name, args=self.str_args)
|
|
|
|
|
|
class Sequence:
|
|
|
|
def __init__(self, function):
|
|
self.sequence = [] #List of Operation and Sequence
|
|
self.function = function #Description the function (name and parameters)
|
|
|
|
def __repr__(self):
|
|
return repr(self.list_operations())
|
|
|
|
def list_operations(self):
|
|
op_list = []
|
|
for x in self.sequence:
|
|
if isinstance(x, Operation):
|
|
op_list.append(x)
|
|
else:
|
|
assert isinstance(x, Sequence)
|
|
op_list += x.list_operations()
|
|
return op_list
|
|
|
|
def insert(self, operation):
|
|
self.sequence.append(operation)
|
|
|
|
def remove(self, operation_index):
|
|
del self.sequence[operation_index]
|
|
|
|
def insert_sequence(self, sequence):
|
|
self.sequence.append(sequence)
|
|
|
|
def shift(self, value):
|
|
for x in self.sequence:
|
|
x.shift(value)
|
|
return self
|
|
|
|
def remove_useless_write(self):
|
|
if self.sequence:
|
|
if isinstance(self.sequence[0], WriteMemory):
|
|
self.remove(0)
|
|
return self
|
|
|
|
def get_makespan(self, chain):
|
|
return sum(op.cost(chain) for op in self.list_operations())
|
|
|
|
def without_suffix(self):
|
|
ops = self.list_operations()
|
|
end_of_first_phase = [i for i in range(len(ops)) if type(ops[i]) is Loss][0]
|
|
try:
|
|
last_idx = max(i for i in range(end_of_first_phase) if not type(ops[i]) is ForwardEnable)
|
|
except ValueError:
|
|
last_idx = -1
|
|
if last_idx == end_of_first_phase - 1:
|
|
return (self, None)
|
|
chain_length = ops[end_of_first_phase -
|
|
1].index ## Some assumption here about the sequence (finishes with Forward_L
|
|
start_of_fwd_enable_chain = ops[last_idx + 1].index ## And starts with B_L), but should be fine in practice
|
|
result = Sequence(Function("Strip", self.function.name, *self.function.args, start_of_fwd_enable_chain))
|
|
for i in range(last_idx + 1):
|
|
result.insert(ops[i])
|
|
result.insert(Loss())
|
|
for i in range(chain_length, start_of_fwd_enable_chain - 1, -1):
|
|
position = end_of_first_phase + 1 + (chain_length - i)
|
|
assert type(ops[position]) is Backward
|
|
assert ops[position].index == i
|
|
for i in range(end_of_first_phase + 1 + 1 + chain_length - start_of_fwd_enable_chain, len(ops)):
|
|
result.insert(ops[i])
|
|
return (result, start_of_fwd_enable_chain)
|