mirror of https://github.com/hpcaitech/ColossalAI
355 lines
13 KiB
Python
355 lines
13 KiB
Python
from typing import List, Tuple
|
|
from torch.fx import Node
|
|
from colossalai.fx.graph_module import ColoGraphModule
|
|
from colossalai.fx.profiler import activation_size, parameter_size
|
|
from colossalai.fx.profiler.tensor import MetaTensor
|
|
import math
|
|
from .linearize import linearize
|
|
from .operation import ForwardCheck, ForwardEnable, ForwardNograd, Backward, Loss, Chain, Sequence, Function
|
|
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
|
|
from colossalai.fx.codegen.activation_checkpoint_codegen import _find_nested_ckpt_regions
|
|
|
|
|
|
# this is the python compute table code from rotor
|
|
# https://gitlab.inria.fr/hiepacs/rotor
|
|
# paper link: https://hal.inria.fr/hal-02352969
|
|
def _compute_table(chain: Chain, mmax) -> Tuple:
|
|
"""Returns the optimal table: a tuple containing:
|
|
Opt[m][lmin][lmax] with lmin = 0...chain.length
|
|
and lmax = lmin...chain.length (lmax is not included) and m = 0...mmax
|
|
what[m][lmin][lmax] is (True,) if the optimal choice is a chain checkpoint
|
|
(False, j) if the optimal choice is a leaf checkpoint of length j
|
|
The computation uses dynamic programming"""
|
|
|
|
fw = chain.fweight + [0] ## forward time
|
|
bw = chain.bweight ## backward time, not used
|
|
cw = chain.cweight + [0] ## size of x (and of y)
|
|
cbw = chain.cbweight + [0] ## size of xbar
|
|
fwd_mem_tmp = chain.fwd_mem_tmp + [0]
|
|
bwd_mem_tmp = chain.bwd_mem_tmp + [0]
|
|
|
|
# Build table
|
|
opt = [[{} for _ in range(chain.length + 1)] for _ in range(mmax + 1)]
|
|
what = [[{} for _ in range(chain.length + 1)] for _ in range(mmax + 1)]
|
|
# Last one is a dict because its indices go from i to l. Renumbering will wait for C implementation
|
|
|
|
# Initialize borders of the tables for lmax-lmin = 0
|
|
for m in range(mmax + 1):
|
|
for i in range(chain.length + 1):
|
|
#lmax-lmin = 0
|
|
limit = max(cw[i + 1] + cbw[i + 1] + fwd_mem_tmp[i], cw[i + 1] + cbw[i + 1] + bwd_mem_tmp[i])
|
|
if m >= limit: ## Equation (1)
|
|
opt[m][i][i] = fw[i] + bw[i]
|
|
else:
|
|
opt[m][i][i] = float("inf")
|
|
|
|
# Compute everything
|
|
for m in range(mmax + 1):
|
|
for d in range(1, chain.length + 1):
|
|
for i in range(chain.length + 1 - d):
|
|
# for idx in range(i+1, chain.length + 1):
|
|
idx = i + d
|
|
mmin = cw[idx + 1] + cw[i + 1] + fwd_mem_tmp[i]
|
|
if idx > i + 1:
|
|
mmin = max(mmin, cw[idx + 1] + max(cw[j] + cw[j + 1] + fwd_mem_tmp[j] for j in range(i + 1, idx)))
|
|
if m < mmin:
|
|
opt[m][i][idx] = float("inf")
|
|
else:
|
|
leaf_checkpoints = [(j, sum(fw[i:j]) + opt[m - cw[j]][j][idx] + opt[m][i][j - 1])
|
|
for j in range(i + 1, idx + 1)
|
|
if m >= cw[j]]
|
|
if leaf_checkpoints:
|
|
best_leaf = min(leaf_checkpoints, key=lambda t: t[1])
|
|
else:
|
|
best_leaf = None
|
|
if m >= cbw[i + 1]:
|
|
chain_checkpoint = opt[m][i][i] + opt[m - cbw[i + 1]][i + 1][idx]
|
|
else:
|
|
chain_checkpoint = float("inf")
|
|
if best_leaf and best_leaf[1] <= chain_checkpoint:
|
|
opt[m][i][idx] = best_leaf[1]
|
|
what[m][i][idx] = (False, best_leaf[0])
|
|
else:
|
|
opt[m][i][idx] = chain_checkpoint
|
|
what[m][i][idx] = (True,)
|
|
return (opt, what)
|
|
|
|
|
|
def _rec(chain: Chain, lmin, lmax, cmem, opt_table):
|
|
""" chain : the class describing the AC graph
|
|
lmin : index of the first forward to execute
|
|
lmax : upper bound index of the last forward to execute (not included)
|
|
cmem : number of available memory slots
|
|
Return the optimal sequence of makespan Opt_hete[cmem][lmin][lmax-lmin]"""
|
|
if cmem <= 0:
|
|
raise ValueError("Can not process a chain with negative memory {cmem}".format(cmem=cmem))
|
|
opt, what = opt_table
|
|
sequence = Sequence(Function("Persistent", lmax - lmin, cmem))
|
|
if opt[cmem][lmin][lmax] == float("inf"):
|
|
raise ValueError("Can not process this chain from index {lmin} to {lmax} with memory {cmem}".format(lmin=lmin,
|
|
lmax=lmax,
|
|
cmem=cmem))
|
|
if lmin == lmax:
|
|
if lmin == chain.length:
|
|
sequence.insert(Loss())
|
|
else:
|
|
sequence.insert(ForwardEnable(lmin))
|
|
sequence.insert(Backward(lmin))
|
|
return sequence
|
|
|
|
if what[cmem][lmin][lmax][0]:
|
|
sequence.insert(ForwardEnable(lmin))
|
|
sequence.insert_sequence(_rec(chain, lmin + 1, lmax, cmem - chain.cbweight[lmin + 1], opt_table))
|
|
sequence.insert(Backward(lmin))
|
|
else:
|
|
j = what[cmem][lmin][lmax][1]
|
|
sequence.insert(ForwardCheck(lmin))
|
|
for k in range(lmin + 1, j):
|
|
sequence.insert(ForwardNograd(k))
|
|
sequence.insert_sequence(_rec(chain, j, lmax, cmem - chain.cweight[j], opt_table))
|
|
sequence.insert_sequence(_rec(chain, lmin, j - 1, cmem, opt_table))
|
|
return sequence
|
|
|
|
|
|
def _fwd_xbar(node: List[Node]) -> int:
|
|
"""Get the forward xbar of a node
|
|
|
|
Args:
|
|
node (List[Node]): List of torch.fx Node,
|
|
indicates a node in linearized graph
|
|
|
|
Returns:
|
|
int: xbar size, unit Byte
|
|
"""
|
|
|
|
xbar = 0
|
|
for n in node:
|
|
xbar += n.meta['fwd_mem_tmp']
|
|
if any(map(lambda x: x.meta['save_fwd_in'], n.users)):
|
|
xbar += n.meta['fwd_mem_out']
|
|
return xbar
|
|
|
|
|
|
def _fwd_time(node: List[Node]) -> int:
|
|
"""Get the foward time of a node
|
|
|
|
Args:
|
|
node (List[Node]): List of torch.fx Node,
|
|
indicates a node in linearized graph
|
|
|
|
Returns:
|
|
int: foward time, extimated by flops count
|
|
"""
|
|
|
|
fwd_time = 0
|
|
for n in node:
|
|
# minimum flop count is needed
|
|
fwd_time += max(n.meta['fwd_flop'], 1)
|
|
return fwd_time
|
|
|
|
|
|
def _bwd_time(node: List[Node]) -> int:
|
|
"""Get the backward time of a node
|
|
|
|
Args:
|
|
node (List[Node]): List of torch.fx Node,
|
|
indicates a node in linearized graph
|
|
|
|
Returns:
|
|
int: backward time, extimated by flops count
|
|
"""
|
|
|
|
bwd_time = 0
|
|
for n in node:
|
|
# minimum flop count is needed
|
|
bwd_time += max(n.meta['bwd_flop'], 1)
|
|
return bwd_time
|
|
|
|
|
|
def _get_bwd_mem_tmp(node: List[Node]) -> int:
|
|
"""Get the backward temp memory of a node
|
|
|
|
Args:
|
|
node (List[Node]): List of torch.fx Node,
|
|
indicates a node in linearized graph
|
|
|
|
Returns:
|
|
int: backward temp memory, unit Byte
|
|
"""
|
|
|
|
def _get_deps_size():
|
|
deps_size = 0
|
|
for k, v in deps.items():
|
|
k: Node
|
|
if v > 0:
|
|
deps_size += k.meta['bwd_mem_out']
|
|
if v == float('-inf'):
|
|
deps_size -= k.meta['fwd_mem_tmp']
|
|
if any(map(lambda x: x.meta['save_fwd_in'], k.users)):
|
|
deps_size -= k.meta['fwd_mem_out']
|
|
|
|
return deps_size
|
|
|
|
bwd_mem_tmp = 0
|
|
deps = {}
|
|
|
|
for n in reversed(node):
|
|
deps[n] = len(n.all_input_nodes)
|
|
bwd_mem_tmp = max(bwd_mem_tmp, _get_deps_size() + n.meta['bwd_mem_tmp'])
|
|
|
|
for child in n.users:
|
|
if child in deps:
|
|
deps[child] -= 1
|
|
if deps[child] <= 0:
|
|
deps[child] = float('-inf') # free
|
|
|
|
return bwd_mem_tmp
|
|
|
|
|
|
def _construct_chain(node_list: List[List[Node]], input) -> Chain:
|
|
|
|
fwd_time = []
|
|
bwd_time = []
|
|
xbar_sizes = [activation_size(input)]
|
|
x_sizes = [activation_size(input)]
|
|
# currently we can't get the temp memory needed in fwd
|
|
tmp_fwd = [0] * len(node_list)
|
|
tmp_bwd = []
|
|
|
|
for idx, node in enumerate(node_list):
|
|
fwd_time.append(_fwd_time(node))
|
|
bwd_time.append(_bwd_time(node))
|
|
x_sizes.append(node[-1].meta['fwd_mem_out'])
|
|
xbar_sizes.append(max(x_sizes[-1], _fwd_xbar(node)))
|
|
tmp_bwd.append(_get_bwd_mem_tmp(node))
|
|
|
|
bwd_time.append(0)
|
|
|
|
# currently we view loss backward temp as zero
|
|
tmp_bwd.append(0)
|
|
|
|
return Chain(fwd_time, bwd_time, x_sizes, xbar_sizes, tmp_fwd, tmp_bwd)
|
|
|
|
|
|
def _annotate_from_sequence(sequence: Sequence, node_list: List[List[Node]]):
|
|
op_list = sequence.list_operations()
|
|
loss_op = next(op for op in op_list if isinstance(op, Loss))
|
|
fwd_list = op_list[:op_list.index(loss_op)]
|
|
bwd_list = op_list[op_list.index(loss_op) + 1:]
|
|
ckpt_idx = 0
|
|
in_ckpt = False
|
|
ckpt_region = []
|
|
|
|
# forward annotation
|
|
for idx, op in enumerate(fwd_list, 0):
|
|
if in_ckpt:
|
|
if isinstance(op, ForwardNograd):
|
|
ckpt_region.append(idx)
|
|
|
|
elif isinstance(op, ForwardEnable):
|
|
in_ckpt = False
|
|
for node_idx in ckpt_region:
|
|
for n in node_list[node_idx]:
|
|
setattr(n, "activation_checkpoint", [ckpt_idx])
|
|
|
|
ckpt_idx += 1
|
|
ckpt_region = []
|
|
|
|
elif isinstance(op, ForwardCheck):
|
|
for node_idx in ckpt_region:
|
|
for n in node_list[node_idx]:
|
|
setattr(n, "activation_checkpoint", [ckpt_idx])
|
|
|
|
ckpt_idx += 1
|
|
ckpt_region = [idx]
|
|
|
|
else:
|
|
if isinstance(op, ForwardCheck):
|
|
in_ckpt = True
|
|
ckpt_region.append(idx)
|
|
|
|
# annotate the backward if there is any nested activation checkpoint
|
|
in_recompute = False
|
|
for op in bwd_list:
|
|
if in_recompute:
|
|
if isinstance(op, ForwardNograd):
|
|
ckpt_region.append(op.index)
|
|
|
|
elif isinstance(op, ForwardEnable):
|
|
for node_idx in ckpt_region:
|
|
for n in node_list[node_idx]:
|
|
n.activation_checkpoint.append(ckpt_idx)
|
|
|
|
ckpt_idx += 1
|
|
ckpt_region = []
|
|
|
|
elif isinstance(op, ForwardCheck):
|
|
for node_idx in ckpt_region:
|
|
for n in node_list[node_idx]:
|
|
n.activation_checkpoint.append(ckpt_idx)
|
|
|
|
ckpt_idx += 1
|
|
ckpt_region = [op.index]
|
|
|
|
elif isinstance(op, Backward):
|
|
for node_idx in ckpt_region:
|
|
for n in node_list[node_idx]:
|
|
n.activation_checkpoint.append(ckpt_idx)
|
|
|
|
in_recompute = False
|
|
|
|
else:
|
|
if not isinstance(op, Backward):
|
|
in_recompute = True
|
|
ckpt_idx = 0
|
|
ckpt_region = []
|
|
if isinstance(op, ForwardCheck):
|
|
ckpt_region.append(op.index)
|
|
|
|
# postprocess, make sure every activation checkpoint label in the
|
|
# same activation checkpoint region (level = 0) has the same length
|
|
op_list = []
|
|
for node in node_list:
|
|
op_list += node
|
|
ckpt_regions = _find_nested_ckpt_regions(op_list)
|
|
for (start_idx, end_idx) in ckpt_regions:
|
|
nested_length = max(len(op_list[idx].activation_checkpoint) for idx in range(start_idx, end_idx + 1))
|
|
for idx in range(start_idx, end_idx + 1):
|
|
op_list[idx].activation_checkpoint += [None] * (nested_length - len(op_list[idx].activation_checkpoint))
|
|
|
|
|
|
def solver_rotor(gm: ColoGraphModule,
|
|
data,
|
|
mem_limit: int,
|
|
mem_slots: int = 500,
|
|
cnode: List[str] = None,
|
|
eps: float = 0.0) -> ColoGraphModule:
|
|
"""solver that automatically find activation checkpoint in rotor's manner
|
|
|
|
Args:
|
|
gm (ColoGraphModule): ColoGraphModule generated by tracing model.
|
|
data (torch.Tensor): input data.
|
|
mem_limit (int): memory budget in Byte.
|
|
mem_slots (int, optional): number of slots for discretizing memory budget. Defaults to 500.
|
|
cnode (List[Node], optional): common node list for linearize. Defaults to None.
|
|
eps (float): epsilon for memory decay. Defaults to 0.0
|
|
|
|
Returns:
|
|
ColoGraphModule: annotated ColoGraphModuled with __sequence__ attribute
|
|
"""
|
|
|
|
node_list = linearize(gm, cnode)
|
|
mem_unit = mem_limit * (1.0 - eps) // mem_slots
|
|
data = MetaTensor(data, fake_device=next(gm.parameters()).device)
|
|
MetaInfoProp(gm).run(data)
|
|
|
|
chain: Chain = _construct_chain(node_list, data)
|
|
chain._discretize(mem_unit)
|
|
opt_table = _compute_table(chain, mem_slots)
|
|
sequence = _rec(chain, 0, chain.length, mem_slots - chain.cweight[0], opt_table)
|
|
_annotate_from_sequence(sequence, node_list)
|
|
|
|
# set __sequence__ attribute to GraphModule
|
|
setattr(gm, "__sequence__", sequence)
|
|
return gm
|