mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
95 lines
2.5 KiB
95 lines
2.5 KiB
from colossalai.gemini.paramhooks import BaseParamHookMgr |
|
from torch import nn |
|
import torch |
|
import torch.nn.functional as F |
|
import copy |
|
|
|
|
|
class SubNet(nn.Module): |
|
|
|
def __init__(self, out_features) -> None: |
|
super().__init__() |
|
self.bias = nn.Parameter(torch.zeros(out_features)) |
|
|
|
def forward(self, x, weight): |
|
return F.linear(x, weight, self.bias) |
|
|
|
|
|
class Net(nn.Module): |
|
|
|
def __init__(self, checkpoint=False) -> None: |
|
super().__init__() |
|
self.fc1 = nn.Linear(5, 5) |
|
self.sub_fc = SubNet(5) |
|
self.fc2 = nn.Linear(5, 1) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.sub_fc(x, self.fc1.weight) |
|
x = self.fc1(x) |
|
x = self.fc2(x) |
|
return x |
|
|
|
|
|
def net_data(): |
|
return (torch.randn(2, 5, dtype=torch.float, device='cuda'),) |
|
|
|
|
|
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool: |
|
if loose: |
|
return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3) |
|
return torch.allclose(tensor_a, tensor_b) |
|
|
|
|
|
def test_base_param_hook(): |
|
torch.manual_seed(0) |
|
model = Net(checkpoint=True).cuda() |
|
model.train() |
|
inputs = net_data() |
|
|
|
def run_model(model, inputs, use_param_hook=False): |
|
if use_param_hook: |
|
|
|
class HooKWrapper: |
|
|
|
def __init__(self) -> None: |
|
self.hook_triggered_times = 0 |
|
|
|
def wrapper_func(self): |
|
|
|
def hook(param, grad) -> torch.Tensor or None: |
|
self.hook_triggered_times += 1 |
|
return grad |
|
|
|
return hook |
|
|
|
hookwrapper = HooKWrapper() |
|
param_list = [p for p in model.parameters()] |
|
hook_mgr = BaseParamHookMgr(param_list) |
|
hook_mgr.register_backward_hooks(hookwrapper.wrapper_func()) |
|
|
|
model.zero_grad(set_to_none=True) |
|
|
|
with torch.cuda.amp.autocast(): |
|
y = model(*inputs) |
|
loss = y.sum() |
|
loss.backward() |
|
|
|
if use_param_hook: |
|
hook_mgr.remove_hooks() |
|
return hookwrapper.hook_triggered_times |
|
|
|
model_copy = copy.deepcopy(model) |
|
|
|
run_model(model, inputs, False) |
|
ret2 = run_model(model_copy, inputs, True) |
|
|
|
# Make sure param hook has only be fired once in case of parameter sharing |
|
assert ret2 == len(list(model.parameters())) |
|
|
|
for p, p_copy in zip(model.parameters(), model_copy.parameters()): |
|
assert allclose(p.grad, p_copy.grad), f"{p.grad} vs {p_copy.grad}" |
|
|
|
|
|
if __name__ == '__main__': |
|
test_base_param_hook()
|
|
|