You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/language/palm/train.py

248 lines
7.4 KiB

import argparse
import gzip
from contextlib import nullcontext
from functools import partial
from time import time
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import tqdm
from palm_pytorch import PaLM
from palm_pytorch.autoregressive_wrapper import AutoregressiveWrapper
from torch.utils.data import DataLoader, Dataset
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.lazy import LazyInitContext
from colossalai.logging import disable_existing_loggers, get_dist_logger
from colossalai.nn import HybridAdam
# constants
NUM_BATCHES = int(10)
WARMUP_BATCHES = 1
GRADIENT_ACCUMULATE_EVERY = 1
LEARNING_RATE = 2e-4
VALIDATE_EVERY = 100
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 1024
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--distplan",
type=str,
default="colossalai",
help="The distributed plan [colossalai, pytorch].",
)
parser.add_argument(
"--offload_optim_frac",
type=float,
default=1.0,
help="Fraction of optimizer states to be offloaded. This is only used for gemini.",
)
parser.add_argument(
"-p",
"--plugin",
type=str,
default="torch_ddp",
choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero"],
help="plugin to use",
)
parser.add_argument(
"--batch_size",
type=int,
default=8,
help="batch size per DP group of training.",
)
parser.add_argument(
"--dummy_data",
type=bool,
default=False,
help="use dummy dataset.",
)
args = parser.parse_args()
return args
# helpers
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
def get_model_size(model: nn.Module):
total_numel = 0
for module in model.modules():
for p in module.parameters(recurse=False):
total_numel += p.numel()
return total_numel
args = parse_args()
if args.distplan not in ["colossalai", "pytorch"]:
raise TypeError(f"{args.distplan} is error")
disable_existing_loggers()
colossalai.launch_from_torch(config={})
logger = get_dist_logger()
def generate_dataset(dummy_data: bool = False):
if not dummy_data:
with gzip.open("./data/enwik8.gz") as file:
X = np.fromstring(file.read(int(95e6)), dtype=np.uint8)
trX, vaX = np.split(X, [int(90e6)])
data_train, data_val = torch.from_numpy(trX), torch.from_numpy(vaX)
# print(f"data_train {data_train.shape} {data_train.dtype} {max(data_train)} {min(data_train)}")
# print(f"data_val {data_val.shape} {data_val.dtype} {max(data_val)} {min(data_val)}")
return data_train, data_val
else:
return torch.randint(0, 100, (90000000,)), torch.randint(0, 100, (5000000,))
data_train, data_val = generate_dataset(args.dummy_data)
print("generate dataset ready!")
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long()
return full_seq.cuda()
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size=args.batch_size))
val_loader = cycle(DataLoader(val_dataset, batch_size=args.batch_size))
if args.distplan == "colossalai":
# instantiate GPT-like decoder model
booster_kwargs = {}
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin()
elif args.plugin == "gemini":
plugin = GeminiPlugin(offload_optim_frac=args.offload_optim_frac, initial_scale=2**5)
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
logger.info(f"plugin: {plugin}")
booster = Booster(plugin=plugin, **booster_kwargs)
ctx = (
LazyInitContext(default_device=get_accelerator().get_current_device())
if args.plugin == "gemini"
else nullcontext()
)
with ctx:
model = PaLM(num_tokens=50304, dim=4096, depth=64)
model = AutoregressiveWrapper(model, max_seq_len=SEQ_LEN)
# optimizer
optimizer = HybridAdam(model.parameters(), lr=LEARNING_RATE, initial_scale=2**5)
model, optimizer, _, _, _ = booster.boost(model, optimizer)
else:
model = PaLM(num_tokens=256, dim=512, depth=8)
model = AutoregressiveWrapper(model, max_seq_len=2048)
model.cuda()
optim = torch.optim.Adam(model.parameters(), lr=LEARNING_RATE)
# model is shared after TP
numel = get_model_size(model)
get_tflops_func = partial(get_tflops, numel, args.batch_size, SEQ_LEN)
# training
model.train()
tflops_list = []
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
if args.distplan == "colossalai":
optimizer.zero_grad()
start = time()
loss = model(next(train_loader))
fwd_end = time()
fwd_time = fwd_end - start
# loss.backward()
optimizer.backward(loss)
bwd_end = time()
bwd_time = bwd_end - fwd_end
# print(f"training loss: {loss.item()}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
# optim.step()
# optim.zero_grad()
optimizer.step()
optim_time = time() - bwd_end
step_time = time() - start
step_tflops = get_tflops_func(step_time)
logger.info(
f"[{i + 1}/{NUM_BATCHES}] Loss:{loss.item():.3f}, Step time: {step_time:.3f}s, TFLOPS: {get_tflops_func(step_time):.3f}, FWD time: {fwd_time:.3f}s, BWD time: {bwd_time:.3f}s, OPTIM time: {optim_time:.3f}s",
ranks=[0],
)
if i >= WARMUP_BATCHES:
tflops_list.append(step_tflops)
else:
for __ in range(GRADIENT_ACCUMULATE_EVERY):
loss = model(next(train_loader))
loss.backward()
print(f"training loss: {loss.item()}")
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
tflops_list.sort()
median_index = ((NUM_BATCHES - WARMUP_BATCHES) >> 1) + WARMUP_BATCHES
logger.info(f"Median TFLOPS is {tflops_list[median_index]:.3f}")
# TODO
# if i % VALIDATE_EVERY == 0:
# model.eval()
# with torch.no_grad():
# loss = model(next(val_loader))
# print(f"validation loss: {loss.item()}")
# if i % GENERATE_EVERY == 0:
# model.eval()
# inp = random.choice(val_dataset)[:-1]
# prime = decode_tokens(inp)
# print(f"%s \n\n %s", (prime, "*" * 100))
# sample = model.generate(inp[None, ...], GENERATE_LENGTH)
# output_str = decode_tokens(sample[0])
# print(output_str)