ColossalAI/applications/ColossalEval/colossal_eval/dataset/mtbench.py

73 lines
2.4 KiB
Python

import copy
import json
import os
from collections import defaultdict
from typing import Dict, List
from colossal_eval.utils import get_json_list
from colossalai.logging import DistributedLogger
from .base import BaseDataset
default_inference_kwargs = {
"calculate_loss": False,
"all_classes": None,
"language": "English",
"pretrain": False,
"max_new_tokens": 1024,
"turns": 2,
}
class MTBenchDataset(BaseDataset):
"""
Dataset class for mt_bench dataset.
Data source: https://github.com/lm-sys/FastChat/blob/main/fastchat/llm_judge/data/mt_bench/question.jsonl
This dataset class will convert the original dataset into the inference dataset.
"""
def __init__(self, path, logger, few_shot):
self.multiturn = True
self.dataset = self.load(path, logger, few_shot)
@staticmethod
def load(path: str, logger: DistributedLogger, few_shot: bool) -> List[Dict]:
dataset = {"test": defaultdict(dict)}
file_path = os.path.join(path, "question.jsonl")
ref_path = os.path.join(path, "reference_answer/gpt-4.jsonl")
reference = defaultdict(list)
ref_origin = get_json_list(ref_path)
for ref in ref_origin:
reference[ref["question_id"]] = ref["choices"][0]["turns"]
with open(file_path, "r", encoding="utf-8") as file:
for line in file:
question = json.loads(line)
category = question["category"]
turn_number = len(question["turns"])
data_point = {
"id": question["question_id"],
"dataset": "mtbench",
"split": "test",
"category": category,
"instruction": question["turns"],
"input": "",
"output": [],
"target": [""] * turn_number
if question["question_id"] not in reference
else reference[question["question_id"]],
}
if category in dataset["test"]:
dataset["test"][category]["data"].append(data_point)
else:
dataset["test"][category] = {
"data": [data_point],
"inference_kwargs": copy.deepcopy(default_inference_kwargs),
}
return dataset