mirror of https://github.com/hpcaitech/ColossalAI
87 lines
3.2 KiB
Python
87 lines
3.2 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import copy
|
|
from functools import partial
|
|
|
|
import colossalai
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.multiprocessing as mp
|
|
from colossalai.utils import free_port
|
|
from colossalai.zero.shard_utils import TensorShardStrategy
|
|
from colossalai.zero.sharded_model import ShardedModelV2
|
|
from colossalai.zero.sharded_optim import ShardedOptimizerV2
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.optim import Adam
|
|
|
|
from common import CONFIG, check_sharded_params_padding
|
|
|
|
|
|
def run_step(model, optimizer, data, label, criterion, enable_autocast=False):
|
|
model.train()
|
|
optimizer.zero_grad()
|
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
y = model(data)
|
|
loss = criterion(y, label)
|
|
loss = loss.float()
|
|
if isinstance(model, ShardedModelV2):
|
|
optimizer.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
|
|
def run_step_no_criterion(model, optimizer, data, label, enable_autocast=False):
|
|
model.train()
|
|
optimizer.zero_grad()
|
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
loss = model(data, label)
|
|
if isinstance(model, ShardedModelV2):
|
|
optimizer.backward(loss)
|
|
else:
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
|
for model_name in test_models:
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
shard_strategy = TensorShardStrategy()
|
|
model, train_dataloader, test_dataloader, optimizer, criterion = get_components_func()
|
|
model = model(checkpoint=True).cuda()
|
|
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
|
|
if dist.get_world_size() > 1:
|
|
model = DDP(model)
|
|
optim = Adam(model.parameters(), lr=1e-3)
|
|
sharded_optim = ShardedOptimizerV2(Adam(zero_model.parameters(), lr=1e-3),
|
|
zero_model,
|
|
shard_strategy,
|
|
initial_scale=2**5)
|
|
for i, (data, label) in enumerate(train_dataloader):
|
|
if i > 2:
|
|
break
|
|
data, label = data.cuda(), label.cuda()
|
|
if criterion is None:
|
|
run_step_no_criterion(model, optim, data, label, False)
|
|
run_step_no_criterion(zero_model, sharded_optim, data, label, False)
|
|
else:
|
|
run_step(model, optim, data, label, criterion, False)
|
|
run_step(zero_model, sharded_optim, data, label, criterion, False)
|
|
check_sharded_params_padding(model, zero_model, loose=True)
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize("world_size", [1, 2, 4])
|
|
def test_sharded_optim_v2(world_size):
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_sharded_optim_v2(world_size=2)
|