mirror of https://github.com/hpcaitech/ColossalAI
603 lines
25 KiB
Python
603 lines
25 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import math
|
|
from typing import Callable, Tuple
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from colossalai.communication import broadcast
|
|
from colossalai.context import ParallelMode, seed
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.global_variables import tensor_parallel_env as env
|
|
from colossalai.nn import init as init
|
|
from colossalai.registry import LAYERS
|
|
from colossalai.utils.cuda import get_current_device
|
|
from torch import Tensor
|
|
from torch.nn.parameter import Parameter
|
|
|
|
from ..base_layer import ParallelLayer
|
|
from ..utils import divide, set_tensor_parallel_attribute_by_partition
|
|
from ._utils import (gather_forward_split_backward, get_parallel_input, reduce_grad, reduce_input, set_parallel_input,
|
|
split_forward_gather_backward)
|
|
|
|
|
|
@LAYERS.register_module
|
|
class Linear1D(torch.nn.Module):
|
|
"""
|
|
Linear layer for 1D parallelism
|
|
|
|
:param in_features: size of each input sample
|
|
:type in_features: int
|
|
:param out_features: size of each output sample
|
|
:type out_features: int
|
|
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to True
|
|
:type bias: bool, optional
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
:type dtype: torch.dtype, optional
|
|
:param skip_bias_add: If set to ``True``, it will skip bias add for linear layer,
|
|
which is preserved for kernel fusion, defaults to False
|
|
:type skip_bias_add: bool, optional
|
|
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
|
|
:type weight_initializer: typing.Callable, optional
|
|
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
|
|
:type bias_initializer: typing.Callable, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
dtype: torch.dtype = None,
|
|
gather_output: bool = False,
|
|
skip_bias_add: bool = False,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
|
super().__init__()
|
|
parallel_input = get_parallel_input()
|
|
if not parallel_input:
|
|
self.layer = Linear1D_Col(in_features,
|
|
out_features,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
gather_output=gather_output,
|
|
skip_bias_add=skip_bias_add,
|
|
weight_initializer=weight_initializer,
|
|
bias_initializer=bias_initializer)
|
|
else:
|
|
self.layer = Linear1D_Row(in_features,
|
|
out_features,
|
|
bias=bias,
|
|
dtype=dtype,
|
|
parallel_input=parallel_input,
|
|
skip_bias_add=skip_bias_add,
|
|
weight_initializer=weight_initializer,
|
|
bias_initializer=bias_initializer)
|
|
|
|
@property
|
|
def weight(self):
|
|
return self.layer.weight
|
|
|
|
@property
|
|
def bias(self):
|
|
return self.layer.bias
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
return self.layer(input_)
|
|
|
|
|
|
@LAYERS.register_module
|
|
class Classifier1D(ParallelLayer):
|
|
"""RowLinear with given weight
|
|
Classifier of 1D parallelism
|
|
|
|
:param in_features: size of input features
|
|
:type in_features: int
|
|
:param num_classes: number of classes in the dataset
|
|
:type num_classes: int
|
|
:param weight: weight of the classifier, defaults to True
|
|
:type weight: torch.nn.Parameter, optional
|
|
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True``
|
|
:type bias: bool, optional
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
:type dtype: torch.dtype, optional
|
|
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
|
|
:type weight_initializer: typing.Callable, optional
|
|
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
|
|
:type bias_initializer: typing.Callable, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features: int,
|
|
num_classes: int,
|
|
weight: Parameter = None,
|
|
bias: bool = True,
|
|
dtype: torch.dtype = None,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.num_classes = num_classes
|
|
self.parallel_input = get_parallel_input()
|
|
|
|
# Divide the weight matrix along the last dimension.
|
|
self.input_size_per_partition = divide(in_features, gpc.tensor_parallel_size)
|
|
|
|
# Parameters.
|
|
# Initialize weight.
|
|
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
|
if weight is not None:
|
|
self.weight = weight
|
|
self.has_weight = False
|
|
else:
|
|
self.weight = Parameter(torch.empty(self.num_classes, self.input_size_per_partition, **factory_kwargs))
|
|
self.has_weight = True
|
|
if bias:
|
|
self.bias = Parameter(torch.empty(self.num_classes, **factory_kwargs))
|
|
else:
|
|
self.bias = None
|
|
with seed(ParallelMode.TENSOR):
|
|
self.reset_parameters(weight_initializer, bias_initializer)
|
|
self._set_tensor_parallel_attributes()
|
|
set_parallel_input(False)
|
|
env.vocab_parallel = False
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
|
fan_in, fan_out = self.in_features, self.num_classes
|
|
if self.has_weight:
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
if self.bias is not None:
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)[0], ParallelMode.PARALLEL_1D)
|
|
|
|
def _set_tensor_parallel_attributes(self):
|
|
if self.has_weight:
|
|
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
|
|
set_tensor_parallel_attribute_by_partition(self.weight, num_partition)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
# Set up backprop all-reduce.
|
|
if self.parallel_input:
|
|
input_ = input_
|
|
else:
|
|
input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1)
|
|
|
|
output_parallel = F.linear(input_, self.weight)
|
|
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
|
|
if self.bias is not None:
|
|
output = output + self.bias
|
|
return output
|
|
|
|
|
|
@LAYERS.register_module
|
|
class VocabParallelClassifier1D(ParallelLayer):
|
|
"""ColLinear with given weight
|
|
Classifier of 1D parallelism
|
|
|
|
:param in_features: size of input features
|
|
:type in_features: int
|
|
:param num_classes: number of classes in the dataset
|
|
:type num_classes: int
|
|
:param weight: weight of the classifier, defaults to True
|
|
:type weight: torch.nn.Parameter, optional
|
|
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True``
|
|
:type bias: bool, optional
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
:type dtype: torch.dtype, optional
|
|
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
|
|
:type weight_initializer: typing.Callable, optional
|
|
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
|
|
:type bias_initializer: typing.Callable, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features: int,
|
|
num_classes: int,
|
|
weight: Parameter = None,
|
|
bias: bool = True,
|
|
dtype: torch.dtype = None,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.num_classes = num_classes
|
|
self.parallel_input = get_parallel_input()
|
|
|
|
# Divide the weight matrix along the last dimension.
|
|
self.num_classes_per_partition = divide(num_classes, gpc.tensor_parallel_size)
|
|
|
|
# Parameters.
|
|
# Initialize weight.
|
|
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
|
if weight is not None:
|
|
self.weight = weight
|
|
self.has_weight = False
|
|
else:
|
|
self.weight = Parameter(torch.empty(self.num_classes_per_partition, self.in_features, **factory_kwargs))
|
|
self.has_weight = True
|
|
if bias:
|
|
self.bias = Parameter(torch.empty(self.num_classes_per_partition, **factory_kwargs))
|
|
else:
|
|
self.bias = None
|
|
with seed(ParallelMode.TENSOR):
|
|
self.reset_parameters(weight_initializer, bias_initializer)
|
|
self._set_tensor_parallel_attributes()
|
|
set_parallel_input(False)
|
|
env.vocab_parallel = True
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
|
fan_in, fan_out = self.in_features, self.num_classes
|
|
if self.has_weight:
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
if self.bias is not None:
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
|
|
def _set_tensor_parallel_attributes(self):
|
|
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
|
|
if self.has_weight:
|
|
set_tensor_parallel_attribute_by_partition(self.weight, num_partition)
|
|
if self.bias is not None:
|
|
set_tensor_parallel_attribute_by_partition(self.bias, num_partition)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
# Set up backprop all-reduce.
|
|
input_parallel = reduce_grad(input_, ParallelMode.PARALLEL_1D)
|
|
# Matrix multiply.
|
|
output = F.linear(input_parallel, self.weight, self.bias)
|
|
return output
|
|
|
|
|
|
@LAYERS.register_module
|
|
class Linear1D_Col(ParallelLayer):
|
|
"""Linear layer with column parallelism.
|
|
|
|
The linear layer is defined as :math:`Y = XA + b`. A is parallelized along
|
|
its second dimension as :math:`A = [A_1, ..., A_p]`.
|
|
|
|
:param in_features: first dimension of matrix A.
|
|
:type in_features: int
|
|
:param output_size: second dimension of matrix A.
|
|
:type output_size: int
|
|
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True``
|
|
:type bias: bool, optional
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
:type dtype: torch.dtype, optional
|
|
:param gather_output: If true, call all-gether on output and make Y avaiable
|
|
to all GPUs, otherwise, every GPU will have its output
|
|
which is :math:`Y_i = XA_i`, defaults to False
|
|
:type gather_output: bool, optional
|
|
:param skip_bias_add: If set to ``True``, it will skip bias add for linear layer,
|
|
which is preserved for kernel fusion, defaults to False
|
|
:type skip_bias_add: bool, optional
|
|
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
|
|
:type weight_initializer: typing.Callable, optional
|
|
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
|
|
:type bias_initializer: typing.Callable, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
dtype: torch.dtype = None,
|
|
gather_output: bool = False,
|
|
skip_bias_add: bool = False,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
|
super().__init__()
|
|
|
|
# Keep input parameters
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
self.gather_output = gather_output
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
if skip_bias_add and not bias:
|
|
raise ValueError('cannot skip bias addition if bias is None')
|
|
|
|
self.out_features_per_partition = divide(out_features, gpc.tensor_parallel_size)
|
|
|
|
# Parameters.
|
|
# Initialize weight.
|
|
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
|
self.weight = Parameter(torch.empty(self.out_features_per_partition, self.in_features, **factory_kwargs))
|
|
|
|
if bias:
|
|
self.bias = Parameter(torch.empty(self.out_features_per_partition, **factory_kwargs))
|
|
else:
|
|
self.bias = None
|
|
with seed(ParallelMode.TENSOR):
|
|
self.reset_parameters(weight_initializer, bias_initializer)
|
|
self._set_tensor_parallel_attributes()
|
|
set_parallel_input(True)
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
|
fan_in, fan_out = self.in_features, self.out_features
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
if self.bias is not None:
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
|
|
def _set_tensor_parallel_attributes(self):
|
|
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
|
|
set_tensor_parallel_attribute_by_partition(self.weight, num_partition)
|
|
if self.bias is not None:
|
|
set_tensor_parallel_attribute_by_partition(self.bias, num_partition)
|
|
|
|
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]:
|
|
# Set up backprop all-reduce.
|
|
input_parallel = reduce_grad(input_, ParallelMode.PARALLEL_1D)
|
|
# Matrix multiply.
|
|
|
|
bias = self.bias if not self.skip_bias_add else None
|
|
output_parallel = F.linear(input_parallel, self.weight, bias)
|
|
if self.gather_output:
|
|
# All-gather across the partitions.
|
|
output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1)
|
|
else:
|
|
output = output_parallel
|
|
if self.skip_bias_add:
|
|
return output, self.bias
|
|
else:
|
|
return output
|
|
|
|
|
|
@LAYERS.register_module
|
|
class Linear1D_Row(ParallelLayer):
|
|
""" Linear layer with row parallelism
|
|
|
|
:param in_features: size of each input sample
|
|
:type in_features: int
|
|
:param out_features: size of each output sample
|
|
:type out_features: int
|
|
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True``
|
|
:type bias: bool, optional
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
:type dtype: torch.dtype, optional
|
|
:param parallel_input: If set to ``True``, it's assumed that the input is splitted, defaults to False
|
|
:type parallel_input: bool, optional
|
|
:param skip_bias_add: If set to ``True``, it will skip bias add for linear layer,
|
|
which is preserved for kernel fusion, defaults to False
|
|
:type skip_bias_add: bool, optional
|
|
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
|
|
:type weight_initializer: typing.Callable, optional
|
|
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
|
|
:type bias_initializer: typing.Callable, optional
|
|
"""
|
|
|
|
def __init__(self,
|
|
in_features: int,
|
|
out_features: int,
|
|
bias: bool = True,
|
|
dtype: torch.dtype = None,
|
|
parallel_input: bool = True,
|
|
skip_bias_add: bool = False,
|
|
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
|
|
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
|
|
super().__init__()
|
|
|
|
# Keep input parameters
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
self.parallel_input = parallel_input
|
|
self.skip_bias_add = skip_bias_add
|
|
|
|
if skip_bias_add and not bias:
|
|
raise ValueError('cannot skip bias addition if bias is None')
|
|
|
|
# Divide the weight matrix along the last dimension.
|
|
self.input_size_per_partition = divide(in_features, gpc.tensor_parallel_size)
|
|
|
|
# Parameters.
|
|
# Initialize weight.
|
|
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
|
|
self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs))
|
|
|
|
if bias:
|
|
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
|
|
else:
|
|
self.bias = None
|
|
with seed(ParallelMode.TENSOR):
|
|
self.reset_parameters(weight_initializer, bias_initializer)
|
|
self._set_tensor_parallel_attributes()
|
|
set_parallel_input(False)
|
|
|
|
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
|
|
fan_in, fan_out = self.in_features, self.out_features
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
if self.bias is not None:
|
|
bias_initializer(self.bias, fan_in=fan_in)
|
|
broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)[0], ParallelMode.PARALLEL_1D)
|
|
|
|
def _set_tensor_parallel_attributes(self):
|
|
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
|
|
set_tensor_parallel_attribute_by_partition(self.weight, num_partition)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
# Set up backprop all-reduce.
|
|
if self.parallel_input:
|
|
input_ = input_
|
|
else:
|
|
input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1)
|
|
|
|
output_parallel = F.linear(input_, self.weight)
|
|
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
|
|
|
|
if not self.skip_bias_add:
|
|
if self.bias is not None:
|
|
output = output + self.bias
|
|
return output
|
|
else:
|
|
return output, self.bias
|
|
|
|
|
|
@LAYERS.register_module
|
|
class Embedding1D(ParallelLayer):
|
|
"""
|
|
Embedding for 1D parallelism
|
|
|
|
:param num_embeddings: number of embeddings
|
|
:type num_embeddings: int
|
|
:param embedding_dim: dimension of embedding
|
|
:type embedding_dim: int
|
|
:param padding_idx: index of padding, defaults to None
|
|
:type padding_idx: int, optional
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
:type dtype: torch.dtype, optional
|
|
:param weight_initializer: The intializer of weight, defaults to normal initializer
|
|
:type weight_initializer: typing.Callable, optional
|
|
:param args: Args used in F.embedding
|
|
:param kwargs: Kwargs used in F.embedding
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_embeddings: int,
|
|
embedding_dim: int,
|
|
padding_idx: int = None,
|
|
dtype: torch.dtype = None,
|
|
weight_initializer: Callable = init.normal_(),
|
|
*args,
|
|
**kwargs):
|
|
super().__init__()
|
|
|
|
self.num_embeddings = num_embeddings
|
|
self.embed_dim = embedding_dim
|
|
embed_dim_per_partition = divide(embedding_dim, gpc.tensor_parallel_size)
|
|
|
|
self.padding_idx = padding_idx
|
|
self.embed_args = args
|
|
self.embed_kwargs = kwargs
|
|
|
|
self.weight = Parameter(
|
|
torch.empty((num_embeddings, embed_dim_per_partition), device=get_current_device(), dtype=dtype))
|
|
|
|
self.reset_parameters(weight_initializer)
|
|
self._set_tensor_parallel_attributes()
|
|
set_parallel_input(False)
|
|
|
|
def _set_tensor_parallel_attributes(self):
|
|
set_tensor_parallel_attribute_by_partition(self.weight, gpc.tensor_parallel_size)
|
|
|
|
def reset_parameters(self, weight_initializer) -> None:
|
|
with seed(ParallelMode.TENSOR):
|
|
fan_in, fan_out = self.num_embeddings, self.embed_dim
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
self._fill_padding_idx_with_zero()
|
|
|
|
def _fill_padding_idx_with_zero(self) -> None:
|
|
if self.padding_idx is not None:
|
|
with torch.no_grad():
|
|
self.weight[self.padding_idx].fill_(0)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
|
|
output_parallel = F.embedding(input_, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs)
|
|
|
|
output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1)
|
|
|
|
return output
|
|
|
|
|
|
@LAYERS.register_module
|
|
class VocabParallelEmbedding1D(torch.nn.Module):
|
|
"""Embedding parallelized in the vocabulary dimension.
|
|
|
|
:param num_embeddings: number of embeddings
|
|
:type num_embeddings: int
|
|
:param embedding_dim: dimension of embedding
|
|
:type embedding_dim: int
|
|
:param padding_idx: index of padding, defaults to None
|
|
:type padding_idx: int, optional
|
|
:param dtype: The dtype of parameters, defaults to None
|
|
:type dtype: torch.dtype, optional
|
|
:param weight_initializer: The intializer of weight, defaults to normal initializer
|
|
:type weight_initializer: typing.Callable, optional
|
|
:param args: Args used in F.embedding
|
|
:param kwargs: Kwargs used in F.embedding
|
|
"""
|
|
|
|
def __init__(self,
|
|
num_embeddings: int,
|
|
embedding_dim: int,
|
|
padding_idx: int = None,
|
|
dtype: torch.dtype = None,
|
|
weight_initializer: Callable = init.normal_(),
|
|
*args,
|
|
**kwargs):
|
|
super().__init__()
|
|
self.num_embeddings = num_embeddings
|
|
self.embed_dim = embedding_dim
|
|
self.padding_idx = padding_idx
|
|
self.embed_args = args
|
|
self.embed_kwargs = kwargs
|
|
|
|
tensor_parallel_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
|
|
tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
|
|
self.num_embeddings_per_partition = divide(num_embeddings, tensor_parallel_size)
|
|
self.vocab_start_index = tensor_parallel_rank * self.num_embeddings_per_partition
|
|
self.vocab_end_index = self.vocab_start_index + self.num_embeddings_per_partition
|
|
|
|
self.weight = Parameter(
|
|
torch.empty((self.num_embeddings_per_partition, self.embed_dim), device=get_current_device(), dtype=dtype))
|
|
|
|
self.reset_parameters(weight_initializer)
|
|
self._set_tensor_parallel_attributes()
|
|
set_parallel_input(False)
|
|
env.vocab_parallel = True
|
|
|
|
def _set_tensor_parallel_attributes(self):
|
|
set_tensor_parallel_attribute_by_partition(self.weight, gpc.tensor_parallel_size)
|
|
|
|
def reset_parameters(self, weight_initializer) -> None:
|
|
with seed(ParallelMode.TENSOR):
|
|
fan_in, fan_out = self.num_embeddings, self.embed_dim
|
|
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
|
|
self._fill_padding_idx_with_zero()
|
|
|
|
def _fill_padding_idx_with_zero(self) -> None:
|
|
if self.padding_idx is not None and \
|
|
self.padding_idx >= self.vocab_start_index and self.padding_idx < self.vocab_end_index:
|
|
with torch.no_grad():
|
|
self.weight[self.padding_idx - self.vocab_start_index].fill_(0)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
# Build the mask.
|
|
input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index)
|
|
# Mask the input.
|
|
masked_input = input_.clone() - self.vocab_start_index
|
|
masked_input[input_mask] = 0
|
|
|
|
output_parallel = F.embedding(masked_input, self.weight, self.padding_idx, *self.embed_args,
|
|
**self.embed_kwargs)
|
|
|
|
# Mask the output embedding.
|
|
output_parallel[input_mask, :] = 0.
|
|
# Reduce across all the model parallel GPUs.
|
|
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
|
|
return output
|
|
|
|
|
|
@LAYERS.register_module
|
|
class Dropout1D(ParallelLayer):
|
|
"""
|
|
Dropout layer of 1D parallelism
|
|
|
|
:param p: dropout rate, defaults to 0.5
|
|
:type p: float, optional
|
|
:param inplace: If set to ``True``, will do this operation in-place, defaults tp ``False``
|
|
:type inplace: bool, optional
|
|
"""
|
|
|
|
def __init__(self, p: float = 0.5, inplace: bool = False):
|
|
super().__init__()
|
|
self.parallel_input = get_parallel_input()
|
|
self.p = p
|
|
self.inplace = inplace
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
if self.parallel_input:
|
|
with seed(ParallelMode.TENSOR):
|
|
output = F.dropout(input_, self.p, self.training, self.inplace)
|
|
else:
|
|
output = F.dropout(input_, self.p, self.training, self.inplace)
|
|
return output
|