ColossalAI/colossalai/nn/layer/parallel_1d/layers.py

603 lines
25 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
from typing import Callable, Tuple
import torch
import torch.nn.functional as F
from colossalai.communication import broadcast
from colossalai.context import ParallelMode, seed
from colossalai.core import global_context as gpc
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.nn import init as init
from colossalai.registry import LAYERS
from colossalai.utils.cuda import get_current_device
from torch import Tensor
from torch.nn.parameter import Parameter
from ..base_layer import ParallelLayer
from ..utils import divide, set_tensor_parallel_attribute_by_partition
from ._utils import (gather_forward_split_backward, get_parallel_input, reduce_grad, reduce_input, set_parallel_input,
split_forward_gather_backward)
@LAYERS.register_module
class Linear1D(torch.nn.Module):
"""
Linear layer for 1D parallelism
:param in_features: size of each input sample
:type in_features: int
:param out_features: size of each output sample
:type out_features: int
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to True
:type bias: bool, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param skip_bias_add: If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
:type skip_bias_add: bool, optional
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
:type weight_initializer: typing.Callable, optional
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
:type bias_initializer: typing.Callable, optional
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
gather_output: bool = False,
skip_bias_add: bool = False,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
super().__init__()
parallel_input = get_parallel_input()
if not parallel_input:
self.layer = Linear1D_Col(in_features,
out_features,
bias=bias,
dtype=dtype,
gather_output=gather_output,
skip_bias_add=skip_bias_add,
weight_initializer=weight_initializer,
bias_initializer=bias_initializer)
else:
self.layer = Linear1D_Row(in_features,
out_features,
bias=bias,
dtype=dtype,
parallel_input=parallel_input,
skip_bias_add=skip_bias_add,
weight_initializer=weight_initializer,
bias_initializer=bias_initializer)
@property
def weight(self):
return self.layer.weight
@property
def bias(self):
return self.layer.bias
def forward(self, input_: Tensor) -> Tensor:
return self.layer(input_)
@LAYERS.register_module
class Classifier1D(ParallelLayer):
"""RowLinear with given weight
Classifier of 1D parallelism
:param in_features: size of input features
:type in_features: int
:param num_classes: number of classes in the dataset
:type num_classes: int
:param weight: weight of the classifier, defaults to True
:type weight: torch.nn.Parameter, optional
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True``
:type bias: bool, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
:type weight_initializer: typing.Callable, optional
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
:type bias_initializer: typing.Callable, optional
"""
def __init__(self,
in_features: int,
num_classes: int,
weight: Parameter = None,
bias: bool = True,
dtype: torch.dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
super().__init__()
self.in_features = in_features
self.num_classes = num_classes
self.parallel_input = get_parallel_input()
# Divide the weight matrix along the last dimension.
self.input_size_per_partition = divide(in_features, gpc.tensor_parallel_size)
# Parameters.
# Initialize weight.
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
if weight is not None:
self.weight = weight
self.has_weight = False
else:
self.weight = Parameter(torch.empty(self.num_classes, self.input_size_per_partition, **factory_kwargs))
self.has_weight = True
if bias:
self.bias = Parameter(torch.empty(self.num_classes, **factory_kwargs))
else:
self.bias = None
with seed(ParallelMode.TENSOR):
self.reset_parameters(weight_initializer, bias_initializer)
self._set_tensor_parallel_attributes()
set_parallel_input(False)
env.vocab_parallel = False
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
fan_in, fan_out = self.in_features, self.num_classes
if self.has_weight:
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)[0], ParallelMode.PARALLEL_1D)
def _set_tensor_parallel_attributes(self):
if self.has_weight:
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
set_tensor_parallel_attribute_by_partition(self.weight, num_partition)
def forward(self, input_: Tensor) -> Tensor:
# Set up backprop all-reduce.
if self.parallel_input:
input_ = input_
else:
input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1)
output_parallel = F.linear(input_, self.weight)
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
if self.bias is not None:
output = output + self.bias
return output
@LAYERS.register_module
class VocabParallelClassifier1D(ParallelLayer):
"""ColLinear with given weight
Classifier of 1D parallelism
:param in_features: size of input features
:type in_features: int
:param num_classes: number of classes in the dataset
:type num_classes: int
:param weight: weight of the classifier, defaults to True
:type weight: torch.nn.Parameter, optional
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True``
:type bias: bool, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
:type weight_initializer: typing.Callable, optional
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
:type bias_initializer: typing.Callable, optional
"""
def __init__(self,
in_features: int,
num_classes: int,
weight: Parameter = None,
bias: bool = True,
dtype: torch.dtype = None,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
super().__init__()
self.in_features = in_features
self.num_classes = num_classes
self.parallel_input = get_parallel_input()
# Divide the weight matrix along the last dimension.
self.num_classes_per_partition = divide(num_classes, gpc.tensor_parallel_size)
# Parameters.
# Initialize weight.
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
if weight is not None:
self.weight = weight
self.has_weight = False
else:
self.weight = Parameter(torch.empty(self.num_classes_per_partition, self.in_features, **factory_kwargs))
self.has_weight = True
if bias:
self.bias = Parameter(torch.empty(self.num_classes_per_partition, **factory_kwargs))
else:
self.bias = None
with seed(ParallelMode.TENSOR):
self.reset_parameters(weight_initializer, bias_initializer)
self._set_tensor_parallel_attributes()
set_parallel_input(False)
env.vocab_parallel = True
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
fan_in, fan_out = self.in_features, self.num_classes
if self.has_weight:
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
def _set_tensor_parallel_attributes(self):
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
if self.has_weight:
set_tensor_parallel_attribute_by_partition(self.weight, num_partition)
if self.bias is not None:
set_tensor_parallel_attribute_by_partition(self.bias, num_partition)
def forward(self, input_: Tensor) -> Tensor:
# Set up backprop all-reduce.
input_parallel = reduce_grad(input_, ParallelMode.PARALLEL_1D)
# Matrix multiply.
output = F.linear(input_parallel, self.weight, self.bias)
return output
@LAYERS.register_module
class Linear1D_Col(ParallelLayer):
"""Linear layer with column parallelism.
The linear layer is defined as :math:`Y = XA + b`. A is parallelized along
its second dimension as :math:`A = [A_1, ..., A_p]`.
:param in_features: first dimension of matrix A.
:type in_features: int
:param output_size: second dimension of matrix A.
:type output_size: int
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True``
:type bias: bool, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param gather_output: If true, call all-gether on output and make Y avaiable
to all GPUs, otherwise, every GPU will have its output
which is :math:`Y_i = XA_i`, defaults to False
:type gather_output: bool, optional
:param skip_bias_add: If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
:type skip_bias_add: bool, optional
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
:type weight_initializer: typing.Callable, optional
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
:type bias_initializer: typing.Callable, optional
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
gather_output: bool = False,
skip_bias_add: bool = False,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
super().__init__()
# Keep input parameters
self.in_features = in_features
self.out_features = out_features
self.gather_output = gather_output
self.skip_bias_add = skip_bias_add
if skip_bias_add and not bias:
raise ValueError('cannot skip bias addition if bias is None')
self.out_features_per_partition = divide(out_features, gpc.tensor_parallel_size)
# Parameters.
# Initialize weight.
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
self.weight = Parameter(torch.empty(self.out_features_per_partition, self.in_features, **factory_kwargs))
if bias:
self.bias = Parameter(torch.empty(self.out_features_per_partition, **factory_kwargs))
else:
self.bias = None
with seed(ParallelMode.TENSOR):
self.reset_parameters(weight_initializer, bias_initializer)
self._set_tensor_parallel_attributes()
set_parallel_input(True)
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
fan_in, fan_out = self.in_features, self.out_features
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
def _set_tensor_parallel_attributes(self):
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
set_tensor_parallel_attribute_by_partition(self.weight, num_partition)
if self.bias is not None:
set_tensor_parallel_attribute_by_partition(self.bias, num_partition)
def forward(self, input_: Tensor) -> Tuple[Tensor, Tensor]:
# Set up backprop all-reduce.
input_parallel = reduce_grad(input_, ParallelMode.PARALLEL_1D)
# Matrix multiply.
bias = self.bias if not self.skip_bias_add else None
output_parallel = F.linear(input_parallel, self.weight, bias)
if self.gather_output:
# All-gather across the partitions.
output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1)
else:
output = output_parallel
if self.skip_bias_add:
return output, self.bias
else:
return output
@LAYERS.register_module
class Linear1D_Row(ParallelLayer):
""" Linear layer with row parallelism
:param in_features: size of each input sample
:type in_features: int
:param out_features: size of each output sample
:type out_features: int
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to ``True``
:type bias: bool, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param parallel_input: If set to ``True``, it's assumed that the input is splitted, defaults to False
:type parallel_input: bool, optional
:param skip_bias_add: If set to ``True``, it will skip bias add for linear layer,
which is preserved for kernel fusion, defaults to False
:type skip_bias_add: bool, optional
:param weight_initializer: The intializer of weight, defaults to kaiming uniform initializer
:type weight_initializer: typing.Callable, optional
:param bias_initializer: The intializer of bias, defaults to xavier uniform initializer
:type bias_initializer: typing.Callable, optional
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype: torch.dtype = None,
parallel_input: bool = True,
skip_bias_add: bool = False,
weight_initializer: Callable = init.kaiming_uniform_(a=math.sqrt(5)),
bias_initializer: Callable = init.xavier_uniform_(a=1, scale=1)):
super().__init__()
# Keep input parameters
self.in_features = in_features
self.out_features = out_features
self.parallel_input = parallel_input
self.skip_bias_add = skip_bias_add
if skip_bias_add and not bias:
raise ValueError('cannot skip bias addition if bias is None')
# Divide the weight matrix along the last dimension.
self.input_size_per_partition = divide(in_features, gpc.tensor_parallel_size)
# Parameters.
# Initialize weight.
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
self.weight = Parameter(torch.empty(self.out_features, self.input_size_per_partition, **factory_kwargs))
if bias:
self.bias = Parameter(torch.empty(self.out_features, **factory_kwargs))
else:
self.bias = None
with seed(ParallelMode.TENSOR):
self.reset_parameters(weight_initializer, bias_initializer)
self._set_tensor_parallel_attributes()
set_parallel_input(False)
def reset_parameters(self, weight_initializer, bias_initializer) -> None:
fan_in, fan_out = self.in_features, self.out_features
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
if self.bias is not None:
bias_initializer(self.bias, fan_in=fan_in)
broadcast(self.bias, gpc.get_ranks_in_group(ParallelMode.PARALLEL_1D)[0], ParallelMode.PARALLEL_1D)
def _set_tensor_parallel_attributes(self):
num_partition = gpc.get_world_size(ParallelMode.TENSOR)
set_tensor_parallel_attribute_by_partition(self.weight, num_partition)
def forward(self, input_: Tensor) -> Tensor:
# Set up backprop all-reduce.
if self.parallel_input:
input_ = input_
else:
input_ = split_forward_gather_backward(input_, ParallelMode.PARALLEL_1D, dim=-1)
output_parallel = F.linear(input_, self.weight)
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
if not self.skip_bias_add:
if self.bias is not None:
output = output + self.bias
return output
else:
return output, self.bias
@LAYERS.register_module
class Embedding1D(ParallelLayer):
"""
Embedding for 1D parallelism
:param num_embeddings: number of embeddings
:type num_embeddings: int
:param embedding_dim: dimension of embedding
:type embedding_dim: int
:param padding_idx: index of padding, defaults to None
:type padding_idx: int, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param weight_initializer: The intializer of weight, defaults to normal initializer
:type weight_initializer: typing.Callable, optional
:param args: Args used in F.embedding
:param kwargs: Kwargs used in F.embedding
"""
def __init__(self,
num_embeddings: int,
embedding_dim: int,
padding_idx: int = None,
dtype: torch.dtype = None,
weight_initializer: Callable = init.normal_(),
*args,
**kwargs):
super().__init__()
self.num_embeddings = num_embeddings
self.embed_dim = embedding_dim
embed_dim_per_partition = divide(embedding_dim, gpc.tensor_parallel_size)
self.padding_idx = padding_idx
self.embed_args = args
self.embed_kwargs = kwargs
self.weight = Parameter(
torch.empty((num_embeddings, embed_dim_per_partition), device=get_current_device(), dtype=dtype))
self.reset_parameters(weight_initializer)
self._set_tensor_parallel_attributes()
set_parallel_input(False)
def _set_tensor_parallel_attributes(self):
set_tensor_parallel_attribute_by_partition(self.weight, gpc.tensor_parallel_size)
def reset_parameters(self, weight_initializer) -> None:
with seed(ParallelMode.TENSOR):
fan_in, fan_out = self.num_embeddings, self.embed_dim
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
self._fill_padding_idx_with_zero()
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None:
with torch.no_grad():
self.weight[self.padding_idx].fill_(0)
def forward(self, input_: Tensor) -> Tensor:
output_parallel = F.embedding(input_, self.weight, self.padding_idx, *self.embed_args, **self.embed_kwargs)
output = gather_forward_split_backward(output_parallel, ParallelMode.PARALLEL_1D, dim=-1)
return output
@LAYERS.register_module
class VocabParallelEmbedding1D(torch.nn.Module):
"""Embedding parallelized in the vocabulary dimension.
:param num_embeddings: number of embeddings
:type num_embeddings: int
:param embedding_dim: dimension of embedding
:type embedding_dim: int
:param padding_idx: index of padding, defaults to None
:type padding_idx: int, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param weight_initializer: The intializer of weight, defaults to normal initializer
:type weight_initializer: typing.Callable, optional
:param args: Args used in F.embedding
:param kwargs: Kwargs used in F.embedding
"""
def __init__(self,
num_embeddings: int,
embedding_dim: int,
padding_idx: int = None,
dtype: torch.dtype = None,
weight_initializer: Callable = init.normal_(),
*args,
**kwargs):
super().__init__()
self.num_embeddings = num_embeddings
self.embed_dim = embedding_dim
self.padding_idx = padding_idx
self.embed_args = args
self.embed_kwargs = kwargs
tensor_parallel_size = gpc.get_world_size(ParallelMode.PARALLEL_1D)
tensor_parallel_rank = gpc.get_local_rank(ParallelMode.PARALLEL_1D)
self.num_embeddings_per_partition = divide(num_embeddings, tensor_parallel_size)
self.vocab_start_index = tensor_parallel_rank * self.num_embeddings_per_partition
self.vocab_end_index = self.vocab_start_index + self.num_embeddings_per_partition
self.weight = Parameter(
torch.empty((self.num_embeddings_per_partition, self.embed_dim), device=get_current_device(), dtype=dtype))
self.reset_parameters(weight_initializer)
self._set_tensor_parallel_attributes()
set_parallel_input(False)
env.vocab_parallel = True
def _set_tensor_parallel_attributes(self):
set_tensor_parallel_attribute_by_partition(self.weight, gpc.tensor_parallel_size)
def reset_parameters(self, weight_initializer) -> None:
with seed(ParallelMode.TENSOR):
fan_in, fan_out = self.num_embeddings, self.embed_dim
weight_initializer(self.weight, fan_in=fan_in, fan_out=fan_out)
self._fill_padding_idx_with_zero()
def _fill_padding_idx_with_zero(self) -> None:
if self.padding_idx is not None and \
self.padding_idx >= self.vocab_start_index and self.padding_idx < self.vocab_end_index:
with torch.no_grad():
self.weight[self.padding_idx - self.vocab_start_index].fill_(0)
def forward(self, input_: Tensor) -> Tensor:
# Build the mask.
input_mask = (input_ < self.vocab_start_index) | (input_ >= self.vocab_end_index)
# Mask the input.
masked_input = input_.clone() - self.vocab_start_index
masked_input[input_mask] = 0
output_parallel = F.embedding(masked_input, self.weight, self.padding_idx, *self.embed_args,
**self.embed_kwargs)
# Mask the output embedding.
output_parallel[input_mask, :] = 0.
# Reduce across all the model parallel GPUs.
output = reduce_input(output_parallel, ParallelMode.PARALLEL_1D)
return output
@LAYERS.register_module
class Dropout1D(ParallelLayer):
"""
Dropout layer of 1D parallelism
:param p: dropout rate, defaults to 0.5
:type p: float, optional
:param inplace: If set to ``True``, will do this operation in-place, defaults tp ``False``
:type inplace: bool, optional
"""
def __init__(self, p: float = 0.5, inplace: bool = False):
super().__init__()
self.parallel_input = get_parallel_input()
self.p = p
self.inplace = inplace
def forward(self, input_: Tensor) -> Tensor:
if self.parallel_input:
with seed(ParallelMode.TENSOR):
output = F.dropout(input_, self.p, self.training, self.inplace)
else:
output = F.dropout(input_, self.p, self.training, self.inplace)
return output