ColossalAI/colossalai/initialize.py

417 lines
18 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import argparse
import os
import pprint
from pathlib import Path
from typing import Dict, Iterable, List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn.modules.loss import _Loss
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim.lr_scheduler import _LRScheduler
from torch.optim.optimizer import Optimizer
from torch.utils.data import DataLoader
from colossalai.amp import AMP_TYPE, convert_to_amp
from colossalai.amp.naive_amp import NaiveAMPModel
from colossalai.builder.builder import build_gradient_handler
from colossalai.context import Config, ConfigException, ParallelMode
from colossalai.core import global_context as gpc
from colossalai.engine import Engine
from colossalai.global_variables import moe_env
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer.colossalai_optimizer import ColossalaiOptimizer
from colossalai.utils import (accumulate_gradient, get_current_device, is_using_ddp, is_using_pp, is_using_sequence,
sync_model_param)
from colossalai.zero import convert_to_zero, ShardedOptimizer
from colossalai.engine.ophooks import BaseOpHook
def get_default_parser():
"""Reads user command line and uses an argument parser to parse the input arguments.
Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed.
:return: Returns the parser with the default arguments, the user may add customized arguments into this parser
:rtype: Namespace
"""
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='path to the config file')
parser.add_argument('--host', type=str, help='the master address for distributed training')
parser.add_argument('--port', type=int, help='the master port for distributed training')
parser.add_argument('--world_size', type=int, help='world size for distributed training')
parser.add_argument('--rank', type=int, help='rank for the default process group')
parser.add_argument('--local_rank', type=int, help='local rank on the node')
parser.add_argument('--backend', type=str, default='nccl', help='backend for distributed communication')
return parser
def launch(config: Union[str, Path, Config, Dict],
rank: int,
world_size: int,
host: str,
port: int,
backend: str = 'nccl',
local_rank: int = None,
seed: int = 1024,
verbose: bool = True):
"""This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input
arguments are not given. Then initialize and set distributed environment by calling global_context's functions.
:param config: Config file or config file path are both acceptable
:type config: Union[str, dict, Config]
:param rank: Rank for the default process group
:type rank: int
:param world_size: World size of the default process group
:type world_size: int
:param host: The master address for distributed training
:type host: str
:param port: The master port for distributed training
:type port: str
:param backend: Backend for torch.distributed
:type backend: str, optional
:param local_rank: Rank for the process on the node and is used to set the default CUDA device, defaults to None.
If local_rank = None, the default device ordinal will be calculated automatically
:type local_rank: int, optional
:param seed: Specified random seed for every processes
:type seed: int, optional
:param verbose: Whether to print logs
:type verbose: bool, optional
:raises Exception: Raise exception when config type is wrong
"""
gpc.verbose = verbose
# set config
assert isinstance(config, (Config, str, Path, dict)), \
f'expected argument config to be Config, str or Path, but got {type(config)}'
if not isinstance(config, Config) and isinstance(config, dict):
config = Config(config)
if isinstance(config, (str, Path)):
config = Config.from_file(config)
gpc.load_config(config)
# init default process group
gpc.init_global_dist(rank, world_size, backend, host, port)
# init process groups for different parallel modes from config
gpc.init_parallel_groups()
# set cuda device
if torch.cuda.is_available():
# if local rank is not given, calculate automatically
gpc.set_device(local_rank)
gpc.set_seed(seed)
if verbose:
logger = get_dist_logger()
logger.info(
f'Distributed environment is initialized, '
f'data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, '
f'tensor parallel size: {gpc.tensor_parallel_size}',
ranks=[0])
def launch_from_slurm(config: Union[str, Path, Config, Dict],
host: str,
port: int,
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for SLURM launcher by reading rank and world size from the environment variables
set by SLURM
:param config: Config file or config file path are both acceptable
:type config: Union[str, dict, Config]
:param host: The master address for distributed training
:type host: str
:param port: The master port for distributed training
:type port: str
:param backend: Backend for torch.distributed
:type backend: str, optional
:param seed: Specified random seed for every processes
:type seed: int, optional
:param verbose: Whether to print logs
:type verbose: bool, optional
"""
rank = int(os.environ['SLURM_PROCID'])
world_size = int(os.environ['SLURM_NPROCS'])
launch(config=config,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def launch_from_openmpi(config: Union[str, Path, Config, Dict],
host: str,
port: int,
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for OpenMPI launcher by reading rank and world size from the environment variables
set by OpenMPI
:param config: Config file or config file path are both acceptable
:type config: Union[str, dict, Config]
:param host: The master address for distributed training
:type host: str
:param port: The master port for distributed training
:type port: str
:param backend: Backend for torch.distributed
:type backend: str, optional
:param seed: Specified random seed for every processes
:type seed: int, optional
:param verbose: Whether to print logs
:type verbose: bool, optional
"""
rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
launch(config=config,
local_rank=local_rank,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def launch_from_torch(config: Union[str, Path, Config, Dict],
backend: str = 'nccl',
seed: int = 1024,
verbose: bool = True):
"""A wrapper for colossalai.launch for torchrun or torch.distributed.launch by reading rank and world size
from the environment variables set by PyTorch
:param config: Config file or config file path are both acceptable
:type config: Union[str, dict, Config]
:param backend: Backend for torch.distributed
:type backend: str, optional
:param seed: Specified random seed for every processes
:type seed: int, optional
:param verbose: Whether to print logs
:type verbose: bool, optional
"""
rank = int(os.environ['RANK'])
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
host = os.environ['MASTER_ADDR']
port = int(os.environ['MASTER_PORT'])
launch(config=config,
local_rank=local_rank,
rank=rank,
world_size=world_size,
host=host,
port=port,
backend=backend,
seed=seed,
verbose=verbose)
def initialize(model: nn.Module,
optimizer: Optimizer,
criterion: Optional[_Loss] = None,
train_dataloader: Optional[Iterable] = None,
test_dataloader: Optional[Iterable] = None,
lr_scheduler: Optional[_LRScheduler] = None,
ophooks: Optional[List[BaseOpHook]] = None,
verbose: bool = True) -> Tuple[Engine, DataLoader, DataLoader, _LRScheduler]:
"""Core function to wrap the essential training components with our functionality based on the config which is
loaded into gpc.config.
:param model: Your model instance
:type model: :class:`torch.nn.Module`
:param optimizer: Your optimizer instance
:type optimizer: :class:`torch.optim.optimizer.Optimizer`
:param criterion: Your criterion instance
:type criterion: :class:`torch.nn.modules.loss._Loss`, optional
:param train_dataloader: Dataloader for training
:type train_dataloader: :class:`torch.utils.data.DataLoader`, optional
:param test_dataloader: Dataloader for testing
:type test_dataloader: :class:`torch.utils.data.DataLoader`, optional
:param lr_scheduler: Your lr scheduler instance, optional
:type lr_scheduler: :class:`torch.nn.lr_scheduler._LRScheduler`, optional
:param verbose: Whether to print logs
:type verbose: bool, optional
:return: (engine, train_dataloader, test_dataloader, lr_scheduler)
:rtype: Tuple
"""
# get logger
logger = get_dist_logger()
gpc.verbose = verbose
# get config from gpc
config = gpc.config
# print config
if verbose:
logger.info(
f"\n========== Your Config ========\n"
f"{pprint.pformat(gpc.config)}\n"
f"================================\n",
ranks=[0])
# cudnn
cudnn_benchmark = config.get('cudnn_benchmark', True)
cudnn_deterministic = config.get('cudnn_deterministic', False)
torch.backends.cudnn.benchmark = cudnn_benchmark
torch.backends.cudnn.deterministic = cudnn_deterministic
if verbose:
logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0])
# first sync model across dp ranks
model.to(get_current_device())
use_zero3 = hasattr(gpc.config, 'zero') and gpc.config.zero.level == 3
if not moe_env.is_initialized() and not use_zero3:
if is_using_sequence():
sync_model_param(model, ParallelMode.SEQUENCE_DP)
elif is_using_ddp():
sync_model_param(model, ParallelMode.DATA)
else:
logger.warning(
"The parameters of models is not automatically synchronized.\n"
"Please make sure that all parameters are the same in data parallel group.",
ranks=[0])
# check amp and zero
fp16_cfg = gpc.config.get('fp16', None)
zero_cfg = gpc.config.get('zero', None)
if fp16_cfg is not None and fp16_cfg.mode is not None and zero_cfg is not None:
raise ConfigException(
"It is not allowed to set fp16 and zero configuration in your config file at the same time")
# clip grad norm
clip_grad_norm = gpc.config.get('clip_grad_norm', 0.0)
if clip_grad_norm > 0:
if zero_cfg is not None:
raise ConfigException(
"clip_grad_norm should be specified with zero, you should specify clip_grad in zero configuration")
# initialize amp
amp_mode = None
if fp16_cfg is not None and fp16_cfg.mode is not None:
cfg_ = fp16_cfg.copy()
amp_mode = cfg_.pop('mode')
if is_using_pp():
assert amp_mode == AMP_TYPE.NAIVE, 'Pipeline only support NaiveAMP currently'
if amp_mode == AMP_TYPE.NAIVE:
cfg_['clip_grad'] = clip_grad_norm
model, optimizer, criterion = convert_to_amp(model=model,
optimizer=optimizer,
criterion=criterion,
mode=amp_mode,
amp_config=cfg_)
if zero_cfg is not None:
cfg_ = zero_cfg.copy()
level = cfg_.pop('level')
model, optimizer = convert_to_zero(model=model, optimizer=optimizer, level=level, zero_config=cfg_)
# gradient handler
gradient_handler_cfg = gpc.config.get('gradient_handler', None)
if gradient_handler_cfg is None:
# if gradient handler is not specified in the configuration file,
# check in the following order
# 1. if optimizer is ZERO, then use zero grad handler
# 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp
# 3. if using pipeline and dp size larger than 1, use data parallel grad handler
if isinstance(optimizer, ShardedOptimizer):
gradient_handler_cfg = [dict(type='ZeROGradientHandler')]
if verbose:
logger.info(
"Training with zero is detected, ZeROGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_ddp() and moe_env.is_initialized():
gradient_handler_cfg = [dict(type='MoeGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected with moe parallel, MoeGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
elif is_using_sequence():
model = DDP(model,
process_group=gpc.get_group(ParallelMode.SEQUENCE_DP),
device_ids=[torch.cuda.current_device()])
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism',
ranks=[0])
elif is_using_ddp() and not is_using_pp() and amp_mode != AMP_TYPE.NAIVE:
model = DDP(model, process_group=gpc.get_group(ParallelMode.DATA), device_ids=[torch.cuda.current_device()])
if verbose:
logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Data Parallelism', ranks=[0])
elif is_using_ddp():
gradient_handler_cfg = [dict(type='DataParallelGradientHandler')]
if verbose:
logger.info(
"Data parallel training is detected when using pipeline parallel, "
"DataParallelGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
# add pipeline parallel gradient handler, if pipeline shared module is detected
for param in model.parameters():
if getattr(param, 'pipeline_shared_module_pg', None) is not None:
if gradient_handler_cfg is None:
gradient_handler_cfg = [dict(type='PipelineSharedModuleGradientHandler')]
else:
gradient_handler_cfg.append(dict(type='PipelineSharedModuleGradientHandler'))
if verbose:
logger.info(
"pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically "
"added even though not specified in the configuration",
ranks=[0])
break
else:
if not isinstance(gradient_handler_cfg, list):
raise ConfigException(
f"expected gradient_handler in the configuration file to be a list but got {type(gradient_handler_cfg)}"
)
# turn off sync buffer for NaiveAMPModel if using torch DDP and NaiveAMPModel at the same time
# to avoid duplicated buffer synchronization
if isinstance(model, DDP) and isinstance(model.module, NaiveAMPModel):
model.module.sync_buffer = False
if gradient_handler_cfg is None:
gradient_handlers = None
if verbose and not isinstance(model, DDP):
logger.warning(
"No PyTorch DDP or gradient handler is set up, please make sure you do not need "
"to all-reduce the gradients after a training step.",
ranks=[0])
else:
gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg]
# check if optimizer is ColossalaiOptimizer
if not isinstance(optimizer, (ColossalaiOptimizer, ShardedOptimizer)):
optimizer = ColossalaiOptimizer(optim=optimizer)
# gradient accumulation
grad_accum_size = gpc.config.get('gradient_accumulation', None)
if grad_accum_size is not None:
optimizer, train_dataloader, gradient_handlers, lr_scheduler = accumulate_gradient(
model=model,
optimizer=optimizer,
dataloader=train_dataloader,
accumulate_size=grad_accum_size,
gradient_handlers=gradient_handlers,
lr_scheduler=lr_scheduler)
engine = Engine(model=model,
optimizer=optimizer,
criterion=criterion,
gradient_handlers=gradient_handlers,
clip_grad_norm=clip_grad_norm,
ophook_list=ophooks)
return engine, train_dataloader, test_dataloader, lr_scheduler