ColossalAI/colossalai/engine/gradient_handler/_sequence_parallel_gradient...

52 lines
1.8 KiB
Python

#!/usr/bin/env python
from functools import total_ordering
import torch
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.registry import GRADIENT_HANDLER
from ._base_gradient_handler import BaseGradientHandler
from ...context.parallel_mode import ParallelMode
import colossalai
@GRADIENT_HANDLER.register_module
class SequenceParallelGradientHandler(BaseGradientHandler):
"""A helper class to handle all-reduce operations in a data parallel group.
A all-reduce collective communication will be operated in
:func:`handle_gradient` among a data parallel group.
For better performance, it bucketizes the gradients of all parameters that are
the same type to improve the efficiency of communication.
"""
def handle_gradient(self):
"""A method running a all-reduce operation in a data parallel group.
"""
# bucketize and all-reduce
buckets = {}
# Pack the buckets.
for param in self._model.parameters():
if param.requires_grad and param.grad is not None:
tp = param.data.type()
if tp not in buckets:
buckets[tp] = []
buckets[tp].append(param)
# For each bucket, all-reduce and copy all-reduced grads.
for tp in buckets:
bucket = buckets[tp]
grads = [param.grad.data for param in bucket]
coalesced = _flatten_dense_tensors(grads)
coalesced /= gpc.get_world_size(ParallelMode.SEQUENCE_DP)
dist.all_reduce(
coalesced, group=gpc.get_group(ParallelMode.SEQUENCE_DP))
for buf, synced in zip(grads, _unflatten_dense_tensors(
coalesced, grads)):
buf.copy_(synced)