mirror of https://github.com/hpcaitech/ColossalAI
120 lines
4.4 KiB
Python
120 lines
4.4 KiB
Python
import torch.distributed as dist
|
|
|
|
from colossalai.registry import DIST_GROUP_INITIALIZER
|
|
from colossalai.global_variables import moe_env
|
|
from .process_group_initializer import ProcessGroupInitializer
|
|
from ..parallel_mode import ParallelMode
|
|
|
|
|
|
@DIST_GROUP_INITIALIZER.register_module
|
|
class Initializer_Moemodel(ProcessGroupInitializer):
|
|
"""Model parallel initialization for MoE system.
|
|
|
|
:param moe_moel: Size of moe model parallel
|
|
:param moe_data: Size of moe data parallel
|
|
:param args: Args used in base class
|
|
:param kwargs: Kwargs used in base class
|
|
|
|
:type moe_model: int
|
|
:type moe_data: int
|
|
"""
|
|
def __init__(self, moe_model, moe_data, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.moe_model = moe_model
|
|
self.moe_data = moe_data
|
|
|
|
def init_dist_group(self):
|
|
"""Initialize model parallel groups in moe parallel environment,
|
|
and assign local_ranks and groups to each gpu.
|
|
|
|
:return: MoE model parallelism's information
|
|
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.MOE_MODEL
|
|
|
|
for i in range(self.moe_data):
|
|
ranks = [i * self.moe_model + j for j in range(self.moe_model)]
|
|
group = dist.new_group(ranks)
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = len(ranks)
|
|
process_group = group
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
|
|
|
|
|
@DIST_GROUP_INITIALIZER.register_module
|
|
class Initializer_Moedata(ProcessGroupInitializer):
|
|
"""Data parallel initialization for MoE system.
|
|
|
|
:param moe_moel: Size of moe model parallel
|
|
:param moe_data: Size of moe data parallel
|
|
:param args: Args used in base class
|
|
:param kwargs: Kwargs used in base class
|
|
|
|
:type moe_model: int
|
|
:type moe_data: int
|
|
"""
|
|
def __init__(self, moe_model, moe_data, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.moe_model = moe_model
|
|
self.moe_data = moe_data
|
|
|
|
def init_dist_group(self):
|
|
"""Initialize data parallel groups in moe parallel environment,
|
|
and assign local_ranks and groups to each gpu.
|
|
|
|
:return: MoE data parallelism's information
|
|
:rtype: Tuple(local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
"""
|
|
local_rank = None
|
|
ranks_in_group = None
|
|
process_group = None
|
|
group_world_size = None
|
|
mode = ParallelMode.MOE_DATA
|
|
|
|
for i in range(self.moe_model):
|
|
ranks = [i + j * self.moe_model for j in range(self.moe_data)]
|
|
group = dist.new_group(ranks)
|
|
|
|
if self.rank in ranks:
|
|
local_rank = ranks.index(self.rank)
|
|
group_world_size = len(ranks)
|
|
process_group = group
|
|
ranks_in_group = ranks
|
|
|
|
return local_rank, group_world_size, process_group, ranks_in_group, mode
|
|
|
|
|
|
@DIST_GROUP_INITIALIZER.register_module
|
|
class Initializer_Moe(ProcessGroupInitializer):
|
|
"""Serves as the single entry point to MoE parallel initialization.
|
|
|
|
:param args: Args used to initialize ProcessGroupInitializer
|
|
:param kwargs: Kwargs used to initialize ProcessGroupInitializer
|
|
"""
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs)
|
|
self.moe_model = moe_env.model_parallel_size
|
|
self.moe_data = moe_env.data_parallel_size
|
|
self.model_initializer = Initializer_Moemodel(
|
|
self.moe_model, self.moe_data, *args, **kwargs)
|
|
self.data_initializer = Initializer_Moedata(
|
|
self.moe_model, self.moe_data, *args, **kwargs)
|
|
|
|
def init_dist_group(self):
|
|
"""Initializes MoE parallel communication groups.
|
|
|
|
:return: MoE parallelism's information
|
|
:rtype: list of Tuples (local_rank, group_world_size, process_group, ranks_in_group, mode)
|
|
"""
|
|
parallel_setting = [self.model_initializer.init_dist_group(),
|
|
self.data_initializer.init_dist_group()]
|
|
return parallel_setting
|