ColossalAI/colossalai/shardformer/shard/slicer.py

162 lines
5.1 KiB
Python

import torch
from ..policies.basepolicy import Col_Layer, Dropout_Layer, Layer, Row_Layer
from .shard_config import ShardConfig
dim_mapping = {Col_Layer: 0, Row_Layer: 1}
class Slicer():
def __init__(
self,
shardconfig: ShardConfig #TODO
) -> None:
self.shardconfig = shardconfig
def slice_weight_bias(
self,
weight: torch.Tensor,
bias: torch.Tensor,
policy_layer_cls: Layer,
n_cast: int = None,
reversed: bool = False,
):
r"""
Slice the weight and bias according to policy layer cls
``Layer`` -> do nothing
``Col_Layer`` -> slice the weight and bias along dim 1
``Row_Layer`` -> slice the weight along dim 0 and do not slice bias
Args:
weight (:class:`torch.nn.Module`): The weight of the layer
bias: (:class:`torch.nn.Module`): The bias of the layer
policy_layer_class (:class:`Policy`): The class represent how to slice the tensor
"""
if policy_layer_cls in [Layer, Dropout_Layer]:
return weight, bias
dim = dim_mapping[policy_layer_cls] if not reversed else (1 - dim_mapping[policy_layer_cls])
# print(weight.shape, dim)
if policy_layer_cls == Col_Layer:
weight = self.slice_tensor(weight, dim, False, n_cast)
bias = self.slice_tensor(bias, 0, True, n_cast)
elif policy_layer_cls == Row_Layer:
weight = self.slice_tensor(weight, dim, False, n_cast)
else:
raise NotImplementedError(f"The policy layer class {policy_layer_cls} is not supported")
if reversed:
weight = weight.transpose(0, 1).contiguous()
return weight, bias
def slice_tensor(
self,
tensor_in: torch.Tensor,
dim: int,
is_bias: bool,
n_cast: int = None,
) -> torch.Tensor:
r"""
Slice tensor according to the config
Args:
tensor_in (:class:`torch.Tensor`): The tensor to slice
dim (int): The dimension to slice
is_bias (bool): Whether the tensor is bias
"""
if tensor_in is None:
return None
if not is_bias:
return self.slice_2d(tensor_in, dim, n_cast)
else:
return self.slice_1d(tensor_in, n_cast)
def slice_2d(
self,
tensor: torch.Tensor,
dim: int,
n_cast: int = None,
) -> torch.Tensor:
r"""
Slice the 2D tensor
Args:
tensor (:class:`torch.Tensor`): The tensor to slice
dim (int): The dimension to slice
"""
assert dim in [0, 1], f"Only support 2D tensor, but got {dim}D tensor"
if dim == 0:
return self.slice_row(tensor, n_cast)
elif dim == 1:
return self.slice_col(tensor, n_cast)
def slice_1d(
self,
tensor: torch.Tensor,
n_cast: int = None,
) -> torch.Tensor:
r"""
Slice the 1D tensor
Args:
tensor (:class:`torch.Tensor`): The tensor to slice
Returns:
:class:`torch.Tensor`: The sliced tensor
"""
if n_cast is None:
return tensor.chunk(self.shardconfig.world_size, dim=0)[self.shardconfig.rank].contiguous()
else:
tensor_chunks = tensor.chunk(self.shardconfig.world_size * n_cast, dim=0)
chunk_list = [
tensor_chunks[i] for i in range(self.shardconfig.rank, len(tensor_chunks), self.shardconfig.world_size)
]
return torch.cat(chunk_list, dim=0).contiguous()
def slice_col(
self,
tensor: torch.Tensor,
n_cast: int = None,
) -> torch.Tensor:
r"""
Slice the tensor in column
Args:
tensor (:class:`torch.Tensor`): The tensor to slice
Returns:
:class:`torch.Tensor`: The sliced tensor
"""
if n_cast is None:
return tensor.chunk(self.shardconfig.world_size, dim=1)[self.shardconfig.rank].contiguous()
else:
tensor_chunks = tensor.chunk(self.shardconfig.world_size * n_cast, dim=1)
chunk_list = [
tensor_chunks[i] for i in range(self.shardconfig.rank, len(tensor_chunks), self.shardconfig.world_size)
]
return torch.cat(chunk_list, dim=1).contiguous()
def slice_row(
self,
tensor: torch.Tensor,
n_cast: int = None,
) -> torch.Tensor:
r"""
Slice the tensor in column
Args:
tensor (:class:`torch.Tensor`): The tensor to slice
Returns:
:class:`torch.Tensor`: The sliced tensor
"""
if n_cast is None:
return tensor.chunk(self.shardconfig.world_size, dim=0)[self.shardconfig.rank].contiguous()
else:
tensor_chunks = tensor.chunk(self.shardconfig.world_size * n_cast, dim=0)
chunk_list = [
tensor_chunks[i] for i in range(self.shardconfig.rank, len(tensor_chunks), self.shardconfig.world_size)
]
return torch.cat(chunk_list, dim=0).contiguous()