mirror of https://github.com/hpcaitech/ColossalAI
214 lines
8.4 KiB
Python
214 lines
8.4 KiB
Python
import os
|
|
from contextlib import nullcontext
|
|
from typing import Any, Dict, Optional
|
|
|
|
import ray
|
|
import ray.util.collective as cc
|
|
import torch
|
|
import torch.distributed as dist
|
|
from tqdm import tqdm
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import HybridParallelPlugin
|
|
from colossalai.initialize import launch
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
from colossalai.utils import get_current_device
|
|
from colossalai.shardformer.policies.auto_policy import get_autopolicy
|
|
|
|
from .comm import ray_broadcast_tensor_dict
|
|
from .utils import bind_batch, post_recv, unbind_batch
|
|
|
|
|
|
class BaseConsumer:
|
|
def __init__(
|
|
self,
|
|
num_producers: int,
|
|
num_episodes: int,
|
|
rank: int,
|
|
world_size: int,
|
|
master_addr: str,
|
|
master_port: int,
|
|
num_update_per_episode: int,
|
|
num_recv_per_update: int,
|
|
batch_size: int,
|
|
model_config: Dict[str, Any],
|
|
plugin_config: Dict[str, Any],
|
|
microbatch_size: int = 1,
|
|
save_interval: int = 100,
|
|
save_dir: str = "./model",
|
|
):
|
|
self.num_producers = num_producers
|
|
self.num_episodes = num_episodes
|
|
self.rank = rank
|
|
self.world_size = world_size
|
|
self.master_addr = master_addr
|
|
self.master_port = master_port
|
|
self.num_update_per_episode = num_update_per_episode
|
|
self.num_recv_per_update = num_recv_per_update
|
|
self.batch_size = batch_size
|
|
self.microbatch_size = microbatch_size
|
|
self.save_interval = save_interval
|
|
self.save_dir = save_dir
|
|
assert batch_size % microbatch_size == 0, "batch_size should be divisible by microbatch_size"
|
|
self.num_microbatches = batch_size // microbatch_size
|
|
|
|
self.model_config = model_config
|
|
self.plugin_config = plugin_config
|
|
assert self.plugin_config.get("pp_size", 1) == 1, "pp_size > 1 is not supported now"
|
|
|
|
self.device = get_current_device()
|
|
|
|
def setup(self) -> None:
|
|
for i in range(self.num_producers):
|
|
cc.init_collective_group(self.world_size + 1, self.rank + 1, group_name=f"sync_data_{i}")
|
|
if self.rank == 0:
|
|
cc.init_collective_group(self.num_producers + 1, self.num_producers, group_name="sync_model")
|
|
launch(self.rank, self.world_size, self.master_addr, self.master_port, local_rank=0)
|
|
|
|
plugin_config = dict(
|
|
tp_size=1,
|
|
pp_size=1,
|
|
precision="bf16",
|
|
zero_stage=1,
|
|
)
|
|
if self.plugin_config.get("pp_size", 1) > 1 and "num_microbatches" not in self.plugin_config:
|
|
plugin_config["microbatch_size"] = self.microbatch_size
|
|
plugin_config.update(self.plugin_config)
|
|
self.plugin = HybridParallelPlugin(**plugin_config)
|
|
self.booster = Booster(plugin=self.plugin)
|
|
if hasattr(self, "critic_model"):
|
|
plugin_config.update({"custom_policy": get_autopolicy(self.critic_model.model)})
|
|
self.critic_plugin = HybridParallelPlugin(**plugin_config)
|
|
self.critic_booster = Booster(plugin=self.critic_plugin)
|
|
self.dp_rank = dist.get_rank(self.plugin.dp_group)
|
|
self.dp_size = dist.get_world_size(self.plugin.dp_group)
|
|
|
|
self.buffer = []
|
|
|
|
self.recv_cnt = 0
|
|
|
|
def state_dict(self) -> Dict[str, torch.Tensor]:
|
|
raise NotImplementedError
|
|
|
|
def step(self, step_idx: int, **kwargs) -> Optional[float]:
|
|
raise NotImplementedError
|
|
|
|
def loop(self) -> None:
|
|
print(
|
|
f"Consumer{self.rank} num_update: {self.num_update_per_episode}, num_recv: {self.num_recv_per_update}, nmb: {self.num_microbatches}"
|
|
)
|
|
for episode in range(self.num_episodes):
|
|
with tqdm(range(self.num_update_per_episode), desc=f"Episode {episode}", disable=self.rank != 0) as pbar:
|
|
for step in pbar:
|
|
i = 0
|
|
for _ in range(self.num_recv_per_update):
|
|
# receive data from producers
|
|
|
|
for r in range(self.num_producers):
|
|
print(f"[T{dist.get_rank()}] Recv data episode {episode} step {step} from {r}")
|
|
self.buffer.extend(
|
|
unbind_batch(
|
|
ray_broadcast_tensor_dict(
|
|
None, src=0, device=self.device, group_name=f"sync_data_{r}"
|
|
)
|
|
)
|
|
)
|
|
while len(self.buffer) >= self.dp_size * self.microbatch_size:
|
|
batches = self.buffer[
|
|
self.dp_rank * self.microbatch_size : (self.dp_rank + 1) * self.microbatch_size
|
|
]
|
|
self.buffer = self.buffer[self.dp_size * self.microbatch_size :]
|
|
batch = bind_batch(batches)
|
|
batch = post_recv(batch)
|
|
loss = self.step(i, **batch)
|
|
if loss is not None:
|
|
pbar.set_postfix({"loss": loss})
|
|
i += 1
|
|
assert len(self.buffer) == 0
|
|
if (step + 1) % self.save_interval == 0:
|
|
if self.rank == 0:
|
|
print(f"Start saving policy model at step {step + 1}.")
|
|
save_path = os.path.join(self.save_dir, f"modeling-step-{step + 1}")
|
|
self.booster.save_model(self.policy_model, save_path, shard=True)
|
|
if self.rank == 0:
|
|
print(f"Saved model checkpoint at step {step + 1} in folder {save_path}")
|
|
|
|
if episode != self.num_episodes - 1 or step != self.num_update_per_episode - 1:
|
|
print(f"[T{dist.get_rank()}] Sync model episode {episode} step {step}")
|
|
state_dict = self.state_dict()
|
|
if self.rank == 0:
|
|
ray_broadcast_tensor_dict(
|
|
state_dict, src=self.num_producers, device=self.device, group_name="sync_model"
|
|
)
|
|
|
|
|
|
@ray.remote
|
|
class SimpleConsumer(BaseConsumer):
|
|
def __init__(
|
|
self,
|
|
num_producers,
|
|
num_episodes,
|
|
rank,
|
|
world_size,
|
|
master_addr,
|
|
master_port,
|
|
num_update_per_episode,
|
|
num_recv_per_update,
|
|
batch_size,
|
|
model_config,
|
|
plugin_config,
|
|
microbatch_size=1,
|
|
):
|
|
super().__init__(
|
|
num_producers,
|
|
num_episodes,
|
|
rank,
|
|
world_size,
|
|
master_addr,
|
|
master_port,
|
|
num_update_per_episode,
|
|
num_recv_per_update,
|
|
batch_size,
|
|
model_config,
|
|
plugin_config,
|
|
microbatch_size,
|
|
)
|
|
path = model_config.pop("path")
|
|
self.model = AutoModelForCausalLM.from_pretrained(path, **model_config)
|
|
self.model.train()
|
|
self.model.gradient_checkpointing_enable()
|
|
self.optimizer = HybridAdam(self.model.parameters(), lr=1e-3)
|
|
self.accum_loss = torch.zeros(1, device=self.device)
|
|
|
|
def setup(self):
|
|
super().setup()
|
|
self.model, self.optimizer, *_ = self.booster.boost(self.model, self.optimizer)
|
|
|
|
def step(self, step_idx: int, **kwargs) -> Optional[float]:
|
|
labels = kwargs["input_ids"].clone()
|
|
labels[kwargs["attention_mask"] == 0] = -100
|
|
kwargs["labels"] = labels
|
|
assert kwargs.pop("action_mask").shape == kwargs.pop("action_log_probs").shape
|
|
|
|
need_update = (step_idx + 1) % self.num_microbatches == 0
|
|
|
|
ctx = nullcontext() if need_update else self.booster.no_sync(self.model, self.optimizer)
|
|
with ctx:
|
|
out = self.model(**kwargs)
|
|
loss = out.loss / self.num_microbatches
|
|
self.accum_loss.add_(loss.data)
|
|
self.booster.backward(loss, self.optimizer)
|
|
if need_update:
|
|
self.optimizer.step()
|
|
self.optimizer.zero_grad()
|
|
loss_scalar = self.accum_loss.item()
|
|
self.accum_loss.zero_()
|
|
return loss_scalar
|
|
|
|
def state_dict(self):
|
|
self.model._force_wait_all_gather()
|
|
model = self.model.unwrap()
|
|
state_dict = model.state_dict()
|
|
return state_dict
|