mirror of https://github.com/hpcaitech/ColossalAI
537 lines
21 KiB
Python
537 lines
21 KiB
Python
import warnings
|
|
from functools import partial
|
|
from typing import Callable, Dict, List, Tuple
|
|
|
|
import numpy as np
|
|
import torch.nn as nn
|
|
from torch import Tensor
|
|
|
|
import colossalai.shardformer.layer as col_nn
|
|
|
|
from ..modeling.jit import get_jit_fused_dropout_add_func
|
|
from ..modeling.whisper import (
|
|
WhisperPipelineForwards,
|
|
get_jit_fused_whisper_decoder_layer_forward,
|
|
get_jit_fused_whisper_encoder_layer_forward,
|
|
get_whisper_flash_attention_forward,
|
|
)
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = [
|
|
"WhisperPolicy",
|
|
"WhisperModelPolicy",
|
|
"WhisperForConditionalGenerationPolicy",
|
|
"WhisperForAudioClassificationPolicy",
|
|
]
|
|
|
|
|
|
class WhisperPolicy(Policy):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
import transformers
|
|
from packaging.version import Version
|
|
|
|
assert Version(transformers.__version__) <= Version(
|
|
"4.33.0"
|
|
), "The Whisper model should run on a transformers version not greater than 4.33.0."
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# reshape the embedding layer
|
|
r"""
|
|
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
|
"""
|
|
vocab_size = self.model.config.vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers.models.whisper.modeling_whisper import (
|
|
WhisperAttention,
|
|
WhisperDecoder,
|
|
WhisperDecoderLayer,
|
|
WhisperEncoder,
|
|
WhisperEncoderLayer,
|
|
)
|
|
|
|
policy = {}
|
|
|
|
if self.shard_config.enable_fused_normalization:
|
|
norm_cls = col_nn.FusedLayerNorm
|
|
else:
|
|
norm_cls = col_nn.LayerNorm
|
|
|
|
if self.shard_config.enable_sequence_parallelism:
|
|
self.shard_config.enable_sequence_parallelism = False
|
|
warnings.warn(
|
|
"Whisper dosen't support sequence parallelism now, will ignore the sequence parallelism flag."
|
|
)
|
|
|
|
# TODO using the jit fused add_and_dropout affect the accuracy
|
|
if self.shard_config.enable_jit_fused:
|
|
self.shard_config.enable_jit_fused = False
|
|
warnings.warn("Whisper dosen't support jit fused operator now, will ignore the jit fused operator flag.")
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
policy[WhisperEncoderLayer] = ModulePolicyDescription(
|
|
attribute_replacement={
|
|
"self_attn.embed_dim": self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
|
"self_attn.num_heads": self.model.config.encoder_attention_heads
|
|
// self.shard_config.tensor_parallel_size,
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.q_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.k_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.v_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.out_proj",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="fc1",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="fc2",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
],
|
|
)
|
|
|
|
policy[WhisperDecoderLayer] = ModulePolicyDescription(
|
|
attribute_replacement={
|
|
"self_attn.embed_dim": self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
|
"self_attn.num_heads": self.model.config.decoder_attention_heads
|
|
// self.shard_config.tensor_parallel_size,
|
|
"encoder_attn.embed_dim": self.model.config.d_model // self.shard_config.tensor_parallel_size,
|
|
"encoder_attn.num_heads": self.model.config.encoder_attention_heads
|
|
// self.shard_config.tensor_parallel_size,
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.q_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.k_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.v_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn.out_proj",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="encoder_attn.q_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="encoder_attn.k_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="encoder_attn.v_proj",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="encoder_attn.out_proj",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="fc1",
|
|
target_module=col_nn.Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="fc2",
|
|
target_module=col_nn.Linear1D_Row,
|
|
),
|
|
],
|
|
)
|
|
|
|
policy[WhisperDecoder] = ModulePolicyDescription(
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="embed_tokens",
|
|
target_module=col_nn.VocabParallelEmbedding1D,
|
|
),
|
|
]
|
|
)
|
|
|
|
# optimization configuration
|
|
# Handle encoder layer
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn_layer_norm",
|
|
target_module=norm_cls,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="final_layer_norm",
|
|
target_module=norm_cls,
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=WhisperEncoderLayer,
|
|
)
|
|
|
|
# Handle decoder layer
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="self_attn_layer_norm",
|
|
target_module=norm_cls,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="final_layer_norm",
|
|
target_module=norm_cls,
|
|
),
|
|
],
|
|
policy=policy,
|
|
target_key=WhisperDecoderLayer,
|
|
)
|
|
|
|
# handle encoder layer
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="layer_norm",
|
|
target_module=norm_cls,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=WhisperEncoder,
|
|
)
|
|
|
|
# handle decoder layer
|
|
self.append_or_create_submodule_replacement(
|
|
description=[
|
|
SubModuleReplacementDescription(
|
|
suffix="layer_norm",
|
|
target_module=norm_cls,
|
|
)
|
|
],
|
|
policy=policy,
|
|
target_key=WhisperDecoder,
|
|
)
|
|
|
|
# enable flash attention
|
|
if self.shard_config.enable_flash_attention:
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_whisper_flash_attention_forward(),
|
|
},
|
|
policy=policy,
|
|
target_key=WhisperAttention,
|
|
)
|
|
|
|
# use jit fused operator
|
|
if self.shard_config.enable_jit_fused:
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_jit_fused_whisper_decoder_layer_forward(),
|
|
"dropout_add": get_jit_fused_dropout_add_func(),
|
|
},
|
|
policy=policy,
|
|
target_key=WhisperDecoderLayer,
|
|
)
|
|
self.append_or_create_method_replacement(
|
|
description={
|
|
"forward": get_jit_fused_whisper_encoder_layer_forward(),
|
|
"dropout_add": get_jit_fused_dropout_add_func(),
|
|
},
|
|
policy=policy,
|
|
target_key=WhisperEncoderLayer,
|
|
)
|
|
|
|
return policy
|
|
|
|
def add_lm_head_policy(self, base_policy):
|
|
from transformers.models.whisper.modeling_whisper import WhisperForConditionalGeneration
|
|
|
|
# optimize for tensor parallelism
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
self.append_or_create_submodule_replacement(
|
|
description=SubModuleReplacementDescription(
|
|
suffix="proj_out", target_module=col_nn.Linear1D_Col, kwargs={"gather_output": True}
|
|
),
|
|
policy=base_policy,
|
|
target_key=WhisperForConditionalGeneration,
|
|
)
|
|
|
|
return base_policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
@staticmethod
|
|
def distribute_whisper_layers(
|
|
num_encoder_layers: int, num_decoder_layers: int, num_stages: int
|
|
) -> Tuple[List[int], int]:
|
|
"""
|
|
Distribute whisper layers into stages when pipeline parallel is used.
|
|
Return the layer distribution as a list and the starting stage of decoder.
|
|
If decoder doesn't exist, returned decoder starting stage is set to num_encoder_layers.
|
|
"""
|
|
|
|
# number of encoder layers must be a positive integer
|
|
if num_encoder_layers <= 0:
|
|
raise ValueError("The number of encoder layers for whisper must be a positive integer.")
|
|
|
|
# number of layers should be large enough to fill in every stage
|
|
if num_encoder_layers + num_decoder_layers < num_stages:
|
|
raise ValueError("The total number of layers can't be smaller than number of stages.")
|
|
|
|
# in the case of whisperEncoderModel, set decoder starting stage to num_stages since it doesn't exist
|
|
if num_decoder_layers == 0:
|
|
return Policy.distribute_layers(num_encoder_layers, num_stages), num_stages
|
|
|
|
# the number of stages distributed between encoder and decoder is optmized in this way:
|
|
# num_encoder_stages = argmin(abs(num_encoder_layers / encoder_stages - num_decoder_layers / decoder_stages))
|
|
# s.t. num_encoder_stages + num_decoder_stages = num_stages, num_encoder_stages >= 1, num_decoder_stages >= 1
|
|
def objective(num_encoder_stages):
|
|
return abs(num_encoder_layers / num_encoder_stages - num_decoder_layers / (num_stages - num_encoder_stages))
|
|
|
|
num_encoder_stages = np.argmin([objective(i) for i in range(1, num_stages)]) + 1
|
|
num_decoder_stages = num_stages - num_encoder_stages
|
|
|
|
encoder_distribution = Policy.distribute_layers(num_encoder_layers, num_encoder_stages)
|
|
decoder_distribution = Policy.distribute_layers(num_decoder_layers, num_decoder_stages)
|
|
return encoder_distribution + decoder_distribution, num_encoder_stages
|
|
|
|
@staticmethod
|
|
def get_whisper_stage_index(
|
|
layers_per_stage: List[int], stage: int, decoder_starting_stage: int
|
|
) -> Tuple[bool, int, int]:
|
|
"""
|
|
Input the distribution of layers among stages, the current stage and the first stage of decoder.
|
|
Return the starting/ending idx of layers in encoder/decoder
|
|
"""
|
|
if stage < decoder_starting_stage:
|
|
return Policy.get_stage_index(layers_per_stage[:decoder_starting_stage], stage)
|
|
else:
|
|
return Policy.get_stage_index(layers_per_stage[decoder_starting_stage:], stage - decoder_starting_stage)
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
assert self.pipeline_stage_manager is not None, "pipeline_stage_manager is None"
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
if self.model.__class__.__name__ == "WhisperModel":
|
|
model = self.model
|
|
elif self.model.__class__.__name__ == "WhisperForConditionalGeneration":
|
|
model = self.model.model
|
|
else:
|
|
model = None
|
|
|
|
if model:
|
|
encoder = self.model.get_encoder()
|
|
decoder = self.model.get_decoder()
|
|
else:
|
|
# whisper for audio classification holds encoder only
|
|
encoder = self.model.encoder
|
|
decoder = None
|
|
|
|
num_encoder_layers = len(encoder.layers)
|
|
if decoder:
|
|
num_decoder_layers = len(decoder.layers)
|
|
else:
|
|
num_decoder_layers = 0
|
|
|
|
held_layers = []
|
|
layers_per_stage, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
|
|
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
|
|
)
|
|
start_idx, end_idx = WhisperPolicy.get_whisper_stage_index(
|
|
layers_per_stage, stage_manager.stage, decoder_starting_stage
|
|
)
|
|
|
|
if stage_manager.stage < decoder_starting_stage:
|
|
# current stage is in whisper's encoder
|
|
if stage_manager.is_first_stage():
|
|
held_layers.append(encoder.embed_positions)
|
|
held_layers.append(encoder.conv1)
|
|
held_layers.append(encoder.conv2)
|
|
if stage_manager.stage == decoder_starting_stage - 1:
|
|
held_layers.append(encoder.layer_norm)
|
|
held_layers.extend(encoder.layers[start_idx:end_idx])
|
|
else:
|
|
# current stage is in whisper's decoder
|
|
# TODO:(Jianghai) We divide encoder and decoder layers into different parts here,
|
|
# the case encoder and decoder put in same stage should be add in the future.
|
|
if stage_manager.stage == decoder_starting_stage:
|
|
held_layers.append(decoder.embed_tokens)
|
|
held_layers.append(decoder.embed_positions)
|
|
if stage_manager.is_last_stage():
|
|
held_layers.append(decoder.layer_norm)
|
|
held_layers.extend(decoder.layers[start_idx:end_idx])
|
|
return held_layers
|
|
|
|
def set_pipeline_forward(self, model_cls: nn.Module, new_forward: Callable, policy: Dict) -> None:
|
|
"""If under pipeline parallel setting, replacing the original forward method of huggingface
|
|
to customized forward method, and add this changing to policy."""
|
|
if not self.pipeline_stage_manager:
|
|
raise ValueError("set_pipeline_forward method can only be called when pipeline parallel is enabled.")
|
|
stage_manager = self.pipeline_stage_manager
|
|
|
|
if self.model.__class__.__name__ == "WhisperModel":
|
|
model = self.model
|
|
elif self.model.__class__.__name__ == "WhisperForConditionalGeneration":
|
|
model = self.model.model
|
|
else:
|
|
model = None
|
|
|
|
if model:
|
|
encoder = self.model.get_encoder()
|
|
decoder = self.model.get_decoder()
|
|
else:
|
|
encoder = self.model.encoder
|
|
decoder = None
|
|
|
|
num_encoder_layers = len(encoder.layers)
|
|
if decoder:
|
|
num_decoder_layers = len(decoder.layers)
|
|
else:
|
|
num_decoder_layers = 0
|
|
|
|
layers_per_stage, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
|
|
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
|
|
)
|
|
stage_index = WhisperPolicy.get_whisper_stage_index(
|
|
layers_per_stage, stage_manager.stage, decoder_starting_stage
|
|
)
|
|
|
|
method_replacement = {
|
|
"forward": partial(
|
|
new_forward,
|
|
stage_manager=stage_manager,
|
|
stage_index=stage_index,
|
|
decoder_starting_stage=decoder_starting_stage,
|
|
)
|
|
}
|
|
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=model_cls)
|
|
|
|
|
|
# WhisperModel
|
|
class WhisperModelPolicy(WhisperPolicy):
|
|
def module_policy(self):
|
|
from transformers import WhisperModel
|
|
|
|
policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(
|
|
model_cls=WhisperModel, new_forward=WhisperPipelineForwards.whisper_model_forward, policy=policy
|
|
)
|
|
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
return super().get_held_layers()
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
"no shared params in whisper model"
|
|
return []
|
|
|
|
|
|
# WhisperForConditionalGeneration
|
|
class WhisperForConditionalGenerationPolicy(WhisperPolicy):
|
|
def module_policy(self):
|
|
from transformers import WhisperForConditionalGeneration
|
|
|
|
policy = super().module_policy()
|
|
policy = self.add_lm_head_policy(policy)
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(
|
|
model_cls=WhisperForConditionalGeneration,
|
|
new_forward=WhisperPipelineForwards.whisper_for_conditional_generation_forward,
|
|
policy=policy,
|
|
)
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.proj_out)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
module = self.model
|
|
model = module.model
|
|
|
|
if model:
|
|
encoder = self.model.get_encoder()
|
|
decoder = self.model.get_decoder()
|
|
else:
|
|
encoder = self.model.encoder
|
|
decoder = None
|
|
|
|
num_encoder_layers = len(encoder.layers)
|
|
if decoder:
|
|
num_decoder_layers = len(decoder.layers)
|
|
else:
|
|
num_decoder_layers = 0
|
|
|
|
stage_manager = self.pipeline_stage_manager
|
|
if stage_manager is not None and stage_manager.num_stages > 1:
|
|
_, decoder_starting_stage = WhisperPolicy.distribute_whisper_layers(
|
|
num_encoder_layers, num_decoder_layers, stage_manager.num_stages
|
|
)
|
|
shared_params = []
|
|
shared_embedding = {}
|
|
if id(module.proj_out) == id(model.decoder.embed_tokens):
|
|
shared_embedding[decoder_starting_stage] = model.decoder.embed_tokens
|
|
shared_embedding[stage_manager.num_stages - 1] = module.proj_out
|
|
if len(shared_embedding) > 0:
|
|
shared_params.append(shared_embedding)
|
|
return shared_params
|
|
return []
|
|
|
|
|
|
# WhisperForAudioClassification
|
|
class WhisperForAudioClassificationPolicy(WhisperPolicy):
|
|
def preprocess(self):
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers import WhisperForAudioClassification
|
|
|
|
policy = super().module_policy()
|
|
|
|
if self.pipeline_stage_manager is not None:
|
|
self.set_pipeline_forward(
|
|
model_cls=WhisperForAudioClassification,
|
|
new_forward=WhisperPipelineForwards.whisper_for_audio_classification_forward,
|
|
policy=policy,
|
|
)
|
|
return policy
|
|
|
|
def get_held_layers(self) -> List[nn.Module]:
|
|
held_layers = super().get_held_layers()
|
|
if self.pipeline_stage_manager.is_last_stage():
|
|
held_layers.append(self.model.projector)
|
|
held_layers.append(self.model.classifier)
|
|
return held_layers
|
|
|
|
def get_shared_params(self) -> List[Dict[int, Tensor]]:
|
|
return []
|