ColossalAI/applications/Chat/coati/trainer/strategies/ddp.py

94 lines
3.3 KiB
Python

import os
import random
import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
from coati.models.base import Actor
from coati.models.lora import LoraLinear
from coati.replay_buffer import ReplayBuffer
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.optim import Optimizer
from torch.utils.data import DataLoader
from .base import Strategy
from .naive import NaiveStrategy
from .sampler import DistributedSampler
class DDPStrategy(NaiveStrategy):
"""
Strategy for distributed training using torch.distributed.
"""
def __init__(self, seed: int = 42) -> None:
self.seed = seed
super().__init__()
def setup_distributed(self) -> None:
try:
rank = int(os.environ['RANK'])
local_rank = int(os.environ['LOCAL_RANK'])
world_size = int(os.environ['WORLD_SIZE'])
host = os.environ['MASTER_ADDR']
port = int(os.environ['MASTER_PORT'])
except KeyError as e:
raise RuntimeError(
f"Could not find {e} in the torch environment, visit https://www.colossalai.org/ for more information on launching with torch"
)
dist.init_process_group('nccl', init_method=f'tcp://[{host}]:{port}', world_size=world_size, rank=rank)
self.set_seed(self.seed)
torch.cuda.set_device(local_rank)
def set_seed(self, seed: int) -> None:
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def setup_model(self, model: nn.Module) -> nn.Module:
device = torch.cuda.current_device()
return DDP(model, device_ids=[device])
def setup_dataloader(self, replay_buffer: ReplayBuffer, pin_memory: bool = False) -> DataLoader:
# DDP only mode, replay buffers on each rank are different.
# sampler = DistributedSampler(replay_buffer,
# num_replicas=dist.get_world_size(),
# rank=dist.get_rank(),
# shuffle=True,
# seed=self.seed,
# drop_last=True)
return DataLoader(
replay_buffer,
batch_size=replay_buffer.sample_batch_size,
# sampler=sampler,
shuffle=True,
drop_last=True,
pin_memory=pin_memory,
collate_fn=replay_buffer.collate_fn)
@staticmethod
def _unwrap_actor(actor: Actor) -> nn.Module:
model: DDP = Strategy._unwrap_actor(actor)
return model.module
def save_model(self, model: nn.Module, path: str, only_rank0: bool = False) -> None:
for module in model.modules():
if isinstance(module, LoraLinear):
module.merge_weights = True
module.eval()
if only_rank0 and dist.get_rank() != 0:
return
model = model.model.module
state_dict = model.state_dict()
torch.save(state_dict, path)
def save_optimizer(self, optimizer: Optimizer, path: str, only_rank0: bool = False) -> None:
if only_rank0 and dist.get_rank() != 0:
return
super().save_optimizer(optimizer, path, only_rank0)
def setup_sampler(self, dataset) -> DistributedSampler:
return DistributedSampler(dataset, dist.get_world_size(), dist.get_rank())