ColossalAI/applications/Chat/coati/models/opt/opt_lm.py

36 lines
1.1 KiB
Python

from typing import Optional
from transformers.models.opt.configuration_opt import OPTConfig
from transformers.models.opt.modeling_opt import OPTForCausalLM
from ..base import LM
class OPTLM(LM):
"""
OPT language model.
Args:
pretrained (str): Pretrained model name or path.
config (OPTConfig): Model config.
checkpoint (bool): Enable gradient checkpointing.
lora_rank (int): Rank of the low-rank approximation.
lora_train_bias (str): LoRA bias training mode.
"""
def __init__(self,
pretrained: Optional[str] = None,
config: Optional[OPTConfig] = None,
checkpoint: bool = False,
lora_rank: int = 0,
lora_train_bias: str = 'none') -> None:
if pretrained is not None:
model = OPTForCausalLM.from_pretrained(pretrained)
elif config is not None:
model = OPTForCausalLM(config)
else:
model = OPTForCausalLM(OPTConfig())
if checkpoint:
model.gradient_checkpointing_enable()
super().__init__(model, lora_rank, lora_train_bias)