mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
139 lines
5.6 KiB
139 lines
5.6 KiB
from functools import partial |
|
|
|
import torch |
|
import torch.distributed as dist |
|
from colossalai.logging import get_dist_logger |
|
from colossalai.utils import checkpoint |
|
from colossalai.zero.shard_utils import TensorShardStrategy |
|
from colossalai.zero.sharded_model import ShardedModelV2 |
|
|
|
LOGGER = get_dist_logger('zero_test') |
|
|
|
MP_PARALLEL_CONFIG = dict(fp16=dict(mode=None,), parallel=dict(pipeline=dict(size=1), tensor=dict(size=2, mode=None))) |
|
|
|
_ZERO_MODEL_CONFIG = dict(reduce_scatter_bucket_size_mb=25, |
|
fp32_reduce_scatter=False, |
|
tensor_placement_policy='cuda', |
|
gradient_predivide_factor=1.0, |
|
shard_strategy=TensorShardStrategy(), |
|
reuse_fp16_shard=False) |
|
|
|
_ZERO_OPTIMIZER_CONFIG = dict(initial_scale=2**5, |
|
min_scale=1, |
|
growth_factor=2, |
|
backoff_factor=0.5, |
|
growth_interval=1000, |
|
hysteresis=2, |
|
max_scale=2**32) |
|
|
|
ZERO_PARALLEL_CONFIG = dict(fp16=dict(mode=None,), |
|
zero=dict( |
|
model_config=_ZERO_MODEL_CONFIG, |
|
optimizer_config=_ZERO_OPTIMIZER_CONFIG, |
|
), |
|
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None))) |
|
|
|
CONFIG = dict(fp16=dict(mode=None,), |
|
zero=dict(level=3, |
|
verbose=False, |
|
offload_optimizer_config=dict(device='cpu', pin_memory=True, buffer_count=5, fast_init=False), |
|
offload_param_config=dict(device='cpu', |
|
pin_memory=True, |
|
buffer_count=5, |
|
buffer_size=1e8, |
|
max_in_cpu=1e9)), |
|
parallel=dict(pipeline=dict(size=1), tensor=dict(size=1, mode=None))) |
|
|
|
|
|
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False): |
|
model.train() |
|
with torch.cuda.amp.autocast(enabled=enable_autocast): |
|
if criterion: |
|
y = model(data) |
|
loss = criterion(y, label) |
|
else: |
|
loss = model(data, label) |
|
loss = loss.float() |
|
if isinstance(model, ShardedModelV2): |
|
model.backward(loss) |
|
else: |
|
loss.backward() |
|
|
|
|
|
def checkpoint_wrapper(module, enable=True): |
|
if enable: |
|
module.forward = partial(checkpoint, module.forward) |
|
return module |
|
|
|
|
|
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool: |
|
if loose: |
|
return torch.allclose(tensor_a, tensor_b, atol=1e-2, rtol=1e-3) |
|
return torch.allclose(tensor_a, tensor_b) |
|
|
|
|
|
def check_grads(model, zero_model, loose=False): |
|
for p, zero_p in zip(model.parameters(), zero_model.parameters()): |
|
zero_grad = zero_p.grad.clone().to(p.device) |
|
grad = p.grad.float() |
|
assert grad.dtype == zero_grad.dtype |
|
assert allclose(grad, zero_grad, loose=loose) |
|
|
|
|
|
def check_params(model, zero_model, loose=False): |
|
for p, zero_p in zip(model.parameters(), zero_model.parameters()): |
|
zero_p = zero_p.clone().to(p.device) |
|
# assert p.dtype == zero_p.dtype |
|
assert allclose(p.float(), zero_p.float(), loose=loose), f"diff {p.float() - zero_p.float()}" |
|
|
|
|
|
def check_grads_padding(model, zero_model, loose=False): |
|
rank = dist.get_rank() |
|
for (name, p), (zero_name, zero_p) in zip(model.named_parameters(), zero_model.named_parameters()): |
|
# zero_grad = zero_p.grad.clone().to(p.device) |
|
if zero_p.colo_attr.is_replicated: |
|
zero_grad = zero_p.colo_attr.grad_payload.clone().to(p.device) |
|
chunks = torch.flatten(p.grad).chunk(dist.get_world_size()) |
|
if rank >= len(chunks): |
|
continue |
|
grad = chunks[rank].float() |
|
if zero_grad.size(0) > grad.size(0): |
|
zero_grad = zero_grad[:grad.size(0)] |
|
else: |
|
zero_grad = zero_p.colo_attr.grad_payload |
|
grad = p.grad.to(zero_grad.dtype) |
|
|
|
assert grad.dtype == zero_grad.dtype |
|
assert allclose(grad, zero_grad, loose=loose), f'diff: {grad - zero_grad}' |
|
|
|
|
|
def check_params_padding(model, zero_model, loose=False): |
|
rank = dist.get_rank() |
|
for p, zero_p in zip(model.parameters(), zero_model.parameters()): |
|
zero_p = zero_p.clone().to(p.device) |
|
chunks = torch.flatten(p).chunk(dist.get_world_size()) |
|
if rank >= len(chunks): |
|
continue |
|
p = chunks[rank] |
|
if zero_p.size(0) > p.size(0): |
|
zero_p = zero_p[:p.size(0)] |
|
assert p.dtype == zero_p.dtype |
|
assert allclose(p, zero_p, loose=loose) |
|
|
|
|
|
def check_sharded_model_params(model, zero_model, loose=False, reuse_fp16_shard=False): |
|
rank = dist.get_rank() |
|
for (name, p), (zero_name, zero_p) in zip(model.named_parameters(), zero_model.named_parameters()): |
|
if zero_p.colo_attr.param_is_sharded: |
|
zero_p = zero_p.colo_attr.data_payload.to(p.device).float() |
|
chunks = torch.flatten(p).chunk(dist.get_world_size()) |
|
if rank >= len(chunks): |
|
continue |
|
p = chunks[rank].float() |
|
if zero_p.size(0) > p.size(0): |
|
zero_p = zero_p[:p.size(0)] |
|
else: |
|
zero_p = zero_p.colo_attr.data_payload.to(p.device) |
|
|
|
assert p.dtype == zero_p.dtype, "Parameter `{}`:\n{} vs {}".format(name, p.dtype, zero_p.dtype) |
|
assert allclose(p, zero_p, loose=loose), f'{p} vs {zero_p}'
|
|
|