Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
Jiarui Fang 27327a4c90
[example] add palm pytorch version (#2172)
2 years ago
..
data [example] add palm pytorch version (#2172) 2 years ago
palm_pytorch [example] add palm pytorch version (#2172) 2 years ago
README.md [example] add palm pytorch version (#2172) 2 years ago
train.py [example] add palm pytorch version (#2172) 2 years ago

README.md

PaLM - Pytorch

Implementation of the specific Transformer architecture from PaLM - Scaling Language Modeling with Pathways, in less than 200 lines of code.

This model is pretty much SOTA on everything language.

It obviously will not scale, but it is just for educational purposes. To elucidate the public how simple it all really is.

Install

$ pip install PaLM-pytorch

Usage

import torch
from palm_pytorch import PaLM

palm = PaLM(
    num_tokens = 20000,
    dim = 512,
    depth = 12,
    heads = 8,
    dim_head = 64,
)

tokens = torch.randint(0, 20000, (1, 2048))
logits = palm(tokens) # (1, 2048, 20000)

The PaLM 540B in the paper would be

palm = PaLM(
    num_tokens = 256000,
    dim = 18432,
    depth = 118,
    heads = 48,
    dim_head = 256
)

Test on Enwik8

$ python train.py

Todo

Citations

@article{chowdhery2022PaLM,
  title   = {PaLM: Scaling Language Modeling with Pathways},
  author  = {Chowdhery, Aakanksha et al},
  year    = {2022}
}