Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

172 lines
6.0 KiB

import torch
from typing import Dict
from torch.fx.node import Node, map_arg
from torch.fx.graph import Graph
def get_comm_size(prev_partition, next_partition):
"""
Given two partitions (parent and child),
calculate the communication size between the two.
"""
# Keep tracking the communication size between parent and child
comm_size = 0
# Keep tracking all the counted node
visited_nodes = set()
# Go through all nodes in the child partition
# If a node has input nodes from the parent partition,
# the output size of those input nodes will be counted
# and added to comm_size
parent_node_names = [n.name for n in prev_partition.graph.nodes]
for node in next_partition.graph.nodes:
input_nodes: Dict[Node, None] = {}
map_arg(node.args, lambda n: input_nodes.setdefault(n))
map_arg(node.kwargs, lambda n: input_nodes.setdefault(n))
for n in input_nodes:
if n.name in parent_node_names and n not in visited_nodes:
comm_size += n.meta['tensor_meta'].numel
visited_nodes.add(n)
return comm_size
def get_leaf(graph: Graph):
"""
Given a graph, return leaf nodes of this graph.
Note: If we remove ``root`` nodes, ``placeholder`` nodes, and ``output`` nodes from fx graph,
we will get a normal DAG. Leaf nodes in this context means leaf nodes in that DAG.
"""
input_nodes: Dict[Node, None] = {}
for node in graph.nodes:
if node.op == 'output':
map_arg(node.args, lambda n: input_nodes.setdefault(n))
map_arg(node.kwargs, lambda n: input_nodes.setdefault(n))
placeholder_nodes = []
for node in input_nodes.keys():
if node.op == 'placeholder':
placeholder_nodes.append(node)
for node in placeholder_nodes:
input_nodes.pop(node)
return list(input_nodes.keys())
def is_leaf(graph: Graph, node: Node):
return node in get_leaf(graph)
def get_top(graph: Graph):
"""
Given a graph, return top nodes of this graph.
Note: If we remove ``root`` nodes, ``placeholder`` nodes, and ``output`` nodes from fx graph,
we will get a normal DAG. Top nodes in this context means nodes with BFS level 0 in that DAG.
"""
top_node_list = set()
for node in graph.nodes:
if node.op == 'output':
continue
is_top = False
def _get_top(node):
nonlocal is_top
if node.op == 'placeholder':
is_top = True
map_arg(node.args, lambda n: _get_top(n))
map_arg(node.kwargs, lambda n: _get_top(n))
if is_top:
top_node_list.add(node)
return list(top_node_list)
def is_top(graph: Graph, node: Node):
return node in get_top(graph)
def get_all_consumers(graph: Graph, node: Node):
"""
Given a graph and a node of this graph, return all consumers of the node.
Returns:
List of ``Nodes`` that node appear in these nodes ``args`` and ``kwargs``.
"""
consumer_list = []
for n in graph.nodes:
if node in n.all_input_nodes:
consumer_list.append(n)
return consumer_list
def assign_bfs_level_to_nodes(graph: Graph):
"""
Give a graph, assign bfs level to each node of this graph excluding ``placeholder`` and ``output`` nodes.
Example:
class MLP(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.linear1 = torch.nn.Linear(dim, dim)
self.linear2 = torch.nn.Linear(dim, dim)
self.linear3 = torch.nn.Linear(dim, dim)
self.linear4 = torch.nn.Linear(dim, dim)
self.linear5 = torch.nn.Linear(dim, dim)
def forward(self, x):
l1 = self.linear1(x)
l2 = self.linear2(x)
l3 = self.linear3(l1)
l4 = self.linear4(l2)
l5 = self.linear5(l3)
return l4, l5
model = MLP(4)
gm = symbolic_trace(model)
print(gm.graph)
assign_bfs_level_to_nodes(gm.graph)
for node in gm.graph.nodes:
if hasattr(node, 'bfs_level'):
print(node.name, node.bfs_level)
Output:
graph():
%x : [#users=2] = placeholder[target=x]
%linear1 : [#users=1] = call_module[target=linear1](args = (%x,), kwargs = {})
%linear2 : [#users=1] = call_module[target=linear2](args = (%x,), kwargs = {})
%linear3 : [#users=1] = call_module[target=linear3](args = (%linear1,), kwargs = {})
%linear4 : [#users=1] = call_module[target=linear4](args = (%linear2,), kwargs = {})
%linear5 : [#users=1] = call_module[target=linear5](args = (%linear3,), kwargs = {})
return (linear4, linear5)
linear1 0
linear2 0
linear3 1
linear4 1
linear5 2
"""
current_level = 0
nodes_to_process = []
top_nodes = get_top(graph)
for node in top_nodes:
node.bfs_level = current_level
nodes_to_process.extend(get_all_consumers(graph, node))
current_level += 1
while nodes_to_process:
new_process_list = []
for node in nodes_to_process:
if node.op == 'output':
continue
node.bfs_level = current_level
new_process_list.extend(get_all_consumers(graph, node))
nodes_to_process = new_process_list
current_level += 1
def get_node_module(node) -> torch.nn.Module:
"""
Find the module associated with the given node.
Args:
node (torch.fx.Node): a torch.fx.Node object in the fx computation graph
Returns:
torch.nn.Module: the module associated with the given node
"""
assert node.graph.owning_module is not None, 'Cannot find the owning_module for node.graph, please make sure the graph is associated with a GraphModule object'
assert node.op == 'call_module', f'Expected node.op to be call_module, but found {node.op}'
module = node.graph.owning_module.get_submodule(node.target)
return module