mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
73 lines
2.5 KiB
73 lines
2.5 KiB
import pytest
|
|
import torch
|
|
|
|
import colossalai
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.testing import (
|
|
assert_hf_output_close,
|
|
clear_cache_before_run,
|
|
parameterize,
|
|
rerun_if_address_is_in_use,
|
|
spawn,
|
|
)
|
|
from tests.kit.model_zoo import model_zoo
|
|
from tests.test_shardformer.test_model._utils import build_model, check_grad, run_forward
|
|
|
|
|
|
def check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
|
|
# check forward
|
|
org_output, org_loss, shard_output, shard_loss = run_forward(
|
|
org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn
|
|
)
|
|
assert_hf_output_close(org_output, shard_output, ignore_keys=["pred_masks"])
|
|
|
|
# do backward
|
|
org_loss.backward()
|
|
shard_loss.backward()
|
|
|
|
assert torch.allclose(
|
|
org_loss, shard_loss, atol=1e-5
|
|
), f"shard model loss is not equal to orgin model loss\n{org_loss}\n{shard_loss}"
|
|
|
|
# check grad
|
|
|
|
sam = org_model
|
|
sharded_sam = sharded_model
|
|
|
|
# check grad
|
|
col_layer_for_check = ["mask_decoder.transformer.layers[0].self_attn.q_proj", "vision_encoder.layers[0].mlp.lin1"]
|
|
row_layer_for_check = ["mask_decoder.transformer.layers[0].self_attn.out_proj", "vision_encoder.layers[0].mlp.lin2"]
|
|
check_grad(sam, sharded_sam, col_layer_for_check, atol=1e-5, rtol=1e-3, dim=0, verbose=False)
|
|
check_grad(sam, sharded_sam, row_layer_for_check, atol=1e-3, rtol=1e-3, dim=1, verbose=False)
|
|
|
|
|
|
@parameterize("enable_fused_normalization", [True, False])
|
|
@parameterize("enable_tensor_parallelism", [True, False])
|
|
@parameterize("enable_flash_attention", [True, False])
|
|
def run_sam_test(enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention):
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_sam")
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
org_model, sharded_model = build_model(
|
|
model_fn, enable_fused_normalization, enable_tensor_parallelism, enable_flash_attention
|
|
)
|
|
check_forward_backward(org_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn)
|
|
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
def check_sam(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
colossalai.launch(config={}, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
run_sam_test()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
@clear_cache_before_run()
|
|
def test_sam():
|
|
spawn(check_sam, 2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_sam()
|