You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_moe/test_moe_checkpoint.py

220 lines
6.5 KiB

import importlib
import os
import shutil
import sys
import pytest
import torch
import torch.distributed as dist
from transformers.models.llama import LlamaConfig
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin.moe_hybrid_parallel_plugin import MoeHybridParallelPlugin
from colossalai.moe.manager import MOE_MANAGER
from colossalai.testing import DummyDataloader, check_state_dict_equal, rerun_if_address_is_in_use, spawn
sys.path.append(
os.path.join(
os.path.dirname(os.path.dirname(os.path.dirname(__file__))),
"examples/language/openmoe",
)
)
OpenMoeForCausalLM = importlib.import_module("model.modeling_openmoe").OpenMoeForCausalLM
set_openmoe_args = importlib.import_module("model.modeling_openmoe").set_openmoe_args
OpenMoeForCausalLMPolicy = importlib.import_module("model.openmoe_policy").OpenMoeForCausalLMPolicy
def data_gen_fn(batch_size: int = 2, max_length: int = 4, vocab_size: int = 20):
input_ids = torch.randint(0, vocab_size, (batch_size, max_length), device=get_accelerator().get_current_device())
attention_mask = torch.ones_like(input_ids)
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": input_ids,
}
def run_fwd_bwd(
model, data, label, criterion, optimizer, enable_autocast=False, pipeline=False, booster=None, plugin=None
):
model.train()
if pipeline:
train_dataloader_iter = DummyDataloader(data_gen_fn, length=1)
is_pp_last_stage = booster.plugin.stage_manager.is_last_stage()
y = booster.execute_pipeline(
train_dataloader_iter,
model,
lambda x, y: x.loss,
optimizer,
return_loss=True,
return_outputs=True,
)
# Backward and optimize
if is_pp_last_stage:
loss = y["loss"]
else:
if criterion:
y = model(data).logits
loss = criterion(y)
else:
loss = model(data, label)
loss = loss.float()
if optimizer is not None:
optimizer.backward(loss)
else:
loss.backward()
return y
def get_config():
config = LlamaConfig(
vocab_size=300,
hidden_size=16,
intermediate_size=32,
num_hidden_layers=2,
num_attention_heads=2,
head_dim=4,
dropout_rate=0.0,
hidden_act="swiglu",
)
set_openmoe_args(config, num_experts=8, moe_layer_interval=1)
return config
def get_model(parallel):
config = get_config()
model = OpenMoeForCausalLM(config)
optim = torch.optim.Adam(model.parameters())
if parallel == None:
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "ep":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "ep_zero":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=1,
zero_stage=2,
extra_dp_size=2,
custom_policy=OpenMoeForCausalLMPolicy(),
)
elif parallel == "hybrid":
plugin = MoeHybridParallelPlugin(
precision="bf16",
tp_size=1,
pp_size=2,
zero_stage=1,
microbatch_size=1,
custom_policy=OpenMoeForCausalLMPolicy(),
)
booster = Booster(plugin=plugin)
model, optim, _, _, _ = booster.boost(model=model, optimizer=optim)
return model, booster, optim
def _test_moe_checkpoint(rank, parallel):
if parallel == None:
MOE_MANAGER.setup(
parallel=None,
)
elif parallel == "ep":
MOE_MANAGER.setup(
parallel="EP",
)
elif parallel == "ep_zero":
MOE_MANAGER.setup(
parallel="EP",
max_ep_size=2,
)
elif parallel == "hybrid":
MOE_MANAGER.setup(
parallel="EP",
mode="fixed",
fixed_dp_size=1,
fixed_ep_size=2,
fixed_pp_size=2,
)
model1, booster1, optim1 = get_model(parallel)
model2, booster2, optim2 = get_model(parallel)
model3, booster3, optim3 = get_model(parallel)
# param ckpt
# shard
booster1.save_model(model1, "./tmp_ckpt1", shard=True, size_per_shard=1)
booster2.load_model(model2, "./tmp_ckpt1")
# unshard
booster1.save_model(model1, "./tmp_ckpt1.pth")
booster3.load_model(model3, "./tmp_ckpt1.pth")
# check
check_state_dict_equal(model1.state_dict(), model2.state_dict(), False)
check_state_dict_equal(model1.state_dict(), model3.state_dict(), False)
# optim ckpt
criterion = lambda x: x.mean()
data = torch.randint(0, 4, (2, 4)).cuda()
label = torch.randint(0, 4, (2,)).cuda()
if parallel == "hybrid":
kwargs = {"pipeline": True, "booster": booster1, "plugin": booster1.plugin}
else:
kwargs = {}
run_fwd_bwd(model1, data, label, criterion, optim1, **kwargs)
optim1.step()
optim1.zero_grad()
# shard
booster1.save_optimizer(optim1, "./tmp_ckpt2", shard=True, size_per_shard=1)
dist.barrier()
booster2.load_optimizer(optim2, "./tmp_ckpt2")
# unshard
booster1.save_optimizer(optim1, "./tmp_ckpt2.pth")
booster3.load_optimizer(optim3, "./tmp_ckpt2.pth")
# check
check_state_dict_equal(optim1.optim.state_dict(), optim2.optim.state_dict(), False)
check_state_dict_equal(optim1.optim.state_dict(), optim3.optim.state_dict(), False)
if dist.get_rank() == 0:
shutil.rmtree("./tmp_ckpt1")
shutil.rmtree("./tmp_ckpt2")
os.remove("./tmp_ckpt1.pth")
os.remove("./tmp_ckpt2.pth")
def _run_dist(rank, world_size, port, parallel):
colossalai.launch(
config=dict(),
rank=rank,
world_size=world_size,
host="localhost",
port=port,
backend="nccl",
)
_test_moe_checkpoint(rank, parallel)
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@pytest.mark.parametrize("parallel", [None, "ep", "ep_zero", "hybrid"])
@rerun_if_address_is_in_use()
def test_moe_checkpoint(world_size, parallel):
spawn(_run_dist, world_size, parallel=parallel)
if __name__ == "__main__":
test_moe_checkpoint(world_size=4, parallel="hybrid")