You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/inference/engine/policies/llama.py

207 lines
8.3 KiB

from functools import partial
from typing import List
import torch
from torch.nn import Module
from transformers.models.llama.modeling_llama import (
LlamaAttention,
LlamaDecoderLayer,
LlamaForCausalLM,
LlamaModel,
LlamaRMSNorm,
)
from colossalai.shardformer.policies.base_policy import ModulePolicyDescription, SubModuleReplacementDescription
# import colossalai
from colossalai.shardformer.policies.llama import LlamaForCausalLMPolicy
from ..modeling._utils import init_to_get_rotary
from ..modeling.llama import LlamaInferenceForwards
try:
from colossalai.kernel.triton import rmsnorm_forward
HAS_TRITON_RMSNORM = True
except:
print("you should install triton from https://github.com/openai/triton")
HAS_TRITON_RMSNORM = False
def get_triton_rmsnorm_forward():
if HAS_TRITON_RMSNORM:
def _triton_rmsnorm_forward(self: LlamaRMSNorm, hidden_states: torch.Tensor):
return rmsnorm_forward(hidden_states, self.weight.data, self.variance_epsilon)
return _triton_rmsnorm_forward
else:
return None
class LlamaModelInferPolicy(LlamaForCausalLMPolicy):
def __init__(self) -> None:
super().__init__()
def module_policy(self):
policy = super().module_policy()
decoder_attribute_replacement = {
"self_attn.hidden_size": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
"self_attn.num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size,
"self_attn.num_key_value_heads": self.model.config.num_key_value_heads
// self.shard_config.tensor_parallel_size,
}
if self.shard_config.extra_kwargs.get("quant", None) == "gptq":
from colossalai.inference.quant.gptq.cai_gptq import ColCaiQuantLinear, RowCaiQuantLinear
policy[LlamaDecoderLayer] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=ColCaiQuantLinear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=ColCaiQuantLinear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=ColCaiQuantLinear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=RowCaiQuantLinear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=ColCaiQuantLinear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=ColCaiQuantLinear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=RowCaiQuantLinear,
kwargs={"split_num": 1},
),
],
)
elif self.shard_config.extra_kwargs.get("quant", None) == "smoothquant":
from colossalai.inference.quant.smoothquant.models.llama import LlamaSmoothquantDecoderLayer
from colossalai.inference.quant.smoothquant.models.parallel_linear import (
ColW8A8BFP32OFP32Linear,
RowW8A8B8O8Linear,
RowW8A8BFP32O32LinearSiLU,
RowW8A8BFP32OFP32Linear,
)
policy[LlamaSmoothquantDecoderLayer] = ModulePolicyDescription(
attribute_replacement=decoder_attribute_replacement,
sub_module_replacement=[
SubModuleReplacementDescription(
suffix="self_attn.q_proj",
target_module=RowW8A8B8O8Linear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="self_attn.k_proj",
target_module=RowW8A8B8O8Linear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="self_attn.v_proj",
target_module=RowW8A8B8O8Linear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="self_attn.o_proj",
target_module=ColW8A8BFP32OFP32Linear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="mlp.gate_proj",
target_module=RowW8A8BFP32O32LinearSiLU,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="mlp.up_proj",
target_module=RowW8A8BFP32OFP32Linear,
kwargs={"split_num": 1},
),
SubModuleReplacementDescription(
suffix="mlp.down_proj",
target_module=ColW8A8BFP32OFP32Linear,
kwargs={"split_num": 1},
),
],
)
self.shard_config._infer()
infer_forward = LlamaInferenceForwards.llama_model_forward
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(description=method_replacement, policy=policy, target_key=LlamaModel)
infer_forward = LlamaInferenceForwards.llama_decoder_layer_forward
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LlamaDecoderLayer
)
infer_forward = LlamaInferenceForwards.llama_flash_attn_kvcache_forward
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LlamaAttention
)
# set as default, in inference we also use pipeline style forward, just setting stage as 1
self.set_pipeline_forward(
model_cls=LlamaForCausalLM, new_forward=LlamaInferenceForwards.llama_causal_lm_forward, policy=policy
)
infer_forward = None
if HAS_TRITON_RMSNORM:
infer_forward = get_triton_rmsnorm_forward()
if infer_forward is not None:
method_replacement = {"forward": partial(infer_forward)}
self.append_or_create_method_replacement(
description=method_replacement, policy=policy, target_key=LlamaRMSNorm
)
return policy
def postprocess(self):
init_to_get_rotary(self.model.model)
return self.model
def get_held_layers(self) -> List[Module]:
"""Get pipeline layers for current stage."""
assert self.pipeline_stage_manager is not None
if self.model.__class__.__name__ == "LlamaModel":
module = self.model
else:
module = self.model.model
stage_manager = self.pipeline_stage_manager
held_layers = []
layers_per_stage = self.distribute_layers(len(module.layers), stage_manager.num_stages)
if stage_manager.is_first_stage():
held_layers.append(module.embed_tokens)
held_layers.append(self.model.lm_head)
start_idx, end_idx = self.get_stage_index(layers_per_stage, stage_manager.stage)
held_layers.extend(module.layers[start_idx:end_idx])
if stage_manager.is_last_stage():
held_layers.append(module.norm)
return held_layers