You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/context/process_group_initializer/initializer_3d.py

217 lines
8.5 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import math
import torch.distributed as dist
from colossalai.global_variables import tensor_parallel_env as env
from colossalai.registry import DIST_GROUP_INITIALIZER
from ..parallel_mode import ParallelMode
from .process_group_initializer import ProcessGroupInitializer
def _check_depth_env_var(depth):
# check global variable
env_depth = env.depth_3d
if env_depth:
assert int(env_depth) == depth, \
'DEPTH_3D has been set in the current environment and ' \
'does not match with the value passed to this initialized'
else:
env.depth_3d = depth
class Initializer_3D_Input(ProcessGroupInitializer):
"""3D tensor parallel initialization among input.
Args:
num_group (int): The number of all tensor groups.
depth (int): Depth of 3D parallelism.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, num_group: int, depth: int, *args):
super().__init__(*args)
self.num_group = num_group
self.depth = depth
def init_dist_group(self):
"""Initialize 3D tensor parallel groups among input, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
3D tensor parallelism's information among input in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_3D_INPUT
env.input_group_3d = mode
for h in range(self.num_group):
for i in range(self.depth):
for k in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for j in range(self.depth)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_3D_Weight(ProcessGroupInitializer):
"""3D tensor parallel initialization among weight.
Args:
num_group (int): The number of all tensor groups.
depth (int): Depth of 3D parallelism.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, num_group: int, depth: int, *args):
super().__init__(*args)
self.num_group = num_group
self.depth = depth
def init_dist_group(self):
"""Initialize 3D tensor parallel groups among weight, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
3D tensor parallelism's information among weight in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_3D_WEIGHT
env.weight_group_3d = mode
for h in range(self.num_group):
for k in range(self.depth):
for j in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for i in range(self.depth)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
class Initializer_3D_Output(ProcessGroupInitializer):
"""3D tensor parallel initialization among output.
Args:
num_group (int): The number of all tensor groups.
depth (int): Depth of 3D parallelism.
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, num_group: int, depth: int, *args):
super().__init__(*args)
self.num_group = num_group
self.depth = depth
def init_dist_group(self):
"""Initialize 3D tensor parallel groups among output, and assign local_ranks and groups to each gpu.
Returns:
Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode):
3D tensor parallelism's information among output in a tuple.
"""
local_rank = None
ranks_in_group = None
process_group = None
cpu_group = None
group_world_size = None
mode = ParallelMode.PARALLEL_3D_OUTPUT
env.output_group_3d = mode
for h in range(self.num_group):
for i in range(self.depth):
for j in range(self.depth):
ranks = [h * self.depth**3 + i + self.depth * (j + self.depth * k) for k in range(self.depth)]
group = dist.new_group(ranks)
group_cpu = dist.new_group(ranks, backend='gloo') if dist.get_backend() != 'gloo' else group
if self.rank in ranks:
local_rank = ranks.index(self.rank)
group_world_size = len(ranks)
process_group = group
cpu_group = group_cpu
ranks_in_group = ranks
return local_rank, group_world_size, process_group, cpu_group, ranks_in_group, mode
@DIST_GROUP_INITIALIZER.register_module
class Initializer_3D(ProcessGroupInitializer):
"""Serve as the single entry point to 3D parallel initialization.
Args:
rank (int): The rank of current process.
world_size (int): Size of whole communication world.
config (Config): Running configuration.
data_parallel_size (int): Size of data parallel.
pipeline_parallel_size (int): Size of pipeline parallel.
tensor_parallel_size (int): Size of tensor parallel.
"""
def __init__(self, *args):
super().__init__(*args)
self.num_group = self.world_size // self.tensor_parallel_size
self.depth = round(math.pow(self.tensor_parallel_size, 1 / 3))
assert self.tensor_parallel_size == self.depth ** 3, \
f'3D depth ({self.depth}) if not cube root of tensor parallel size ({self.tensor_parallel_size})'
_check_depth_env_var(self.depth)
self.input_initializer = Initializer_3D_Input(self.num_group, self.depth, *args)
self.weight_initializer = Initializer_3D_Weight(self.num_group, self.depth, *args)
self.output_initializer = Initializer_3D_Output(self.num_group, self.depth, *args)
def init_dist_group(self):
"""Initialize 3D tensor parallel groups, and assign local_ranks and groups to each gpu.
Returns:
List[Tuple (local_rank, group_world_size, process_group, ranks_in_group, mode)]:
Whole 3D tensor parallelism's information in a list of tuples.
"""
parallel_setting = [
self.input_initializer.init_dist_group(),
self.weight_initializer.init_dist_group(),
self.output_initializer.init_dist_group()
]
return parallel_setting