Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

151 lines
5.8 KiB

from typing import List
from .dynamic_batching.io_struct import Batch, Req, RequestOutput
from .manager import DynamicBatchManager
from .tensor_parallel import TPInferEngine
class Async_DynamicBatchManager(DynamicBatchManager):
def __init__(
self,
tp_engine: TPInferEngine,
max_total_token_num: int,
batch_max_tokens: int,
model: str,
tokenizer=None,
eos_id=None,
log_stats=True,
log_stats_interval=10,
running_batch: Batch = None,
waiting_req_list: List = [],
):
"""
Args: tp_engine : The tp engine that dynamic batch manager hold, defined before dynamic batch manager
max_total_token_num : max_total_token_num for memory manager, default to: max batch size * (max input len + max output len)
batch_max_tokens : max tokens of one batch, default to (max input + output len) * num_requests
running_max_req_size : max request size of running batch, equals to MAX_BATCH_SIZE of tp engine
eos_id : The end token of a seq
model: the model weight dir path, the app will load config, weights and tokenizer from this dir
log_stats : whether to log stats
log_stats_interval : log stats interval
running_batch : running batch
waiting_req_list : list of waiting requests, initialized before dynamic batch manager
"""
super().__init__(
tp_engine,
max_total_token_num,
batch_max_tokens,
model,
tokenizer,
eos_id,
log_stats,
log_stats_interval,
running_batch,
waiting_req_list,
)
def _step(self):
"""
Logic for handling requests
"""
has_new_finished = False
if self.running_batch is None:
new_batch = self.req_queue.generate_new_batch(self.running_batch)
if new_batch is not None:
self.stats_tool.count_prompt_tokens(new_batch)
self.running_batch = new_batch
has_new_finished, outputs = self._prefill_batch(self.running_batch)
self._filter_runing_batch()
self.has_wait_tokens = 0
else:
if self.has_wait_tokens < self.max_wait_tokens:
self.stats_tool.count_output_tokens(self.running_batch)
has_new_finished, outputs = self._decode_batch(self.running_batch)
self._filter_runing_batch()
self.has_wait_tokens += 1
else:
new_mini_batch = self.req_queue.generate_new_batch(self.running_batch)
if new_mini_batch is not None:
self.stats_tool.count_prompt_tokens(new_mini_batch)
has_new_finished, outputs = self._prefill_batch(new_mini_batch)
if not new_mini_batch.is_clear():
self._merge_batch(self.running_batch, new_mini_batch)
self.running_batch.merge(new_mini_batch)
self.has_wait_tokens = 0
else:
self.stats_tool.count_output_tokens(self.running_batch)
has_new_finished, outputs = self._decode_batch(self.running_batch)
self._filter_runing_batch()
self.has_wait_tokens += 1
if has_new_finished:
return outputs
return None
def _prefill_batch(self, batch):
"""
For all batches, no matter it is a new batch or a mini batch, we need to do prefill first.
"""
self._init_batch(batch)
# TODO: figure out if cache and batch id is needed
ans = self.engine._prefill_batch(batch.batch_id)
req_to_out_token_id = ans
self._add_token_id_to_req(batch, req_to_out_token_id)
has_new_finished_req = batch.mark_finished_req(self.eos_id, self.engine.max_output_len)
outputs = self._handle_finish_req(batch, has_new_finished_req)
return has_new_finished_req, outputs
# delete finished reqs
def _decode_batch(self, batch: Batch):
"""
Decoding process
"""
ans = self.engine._decode_batch(batch.batch_id)
req_to_out_token_id = ans
self._add_token_id_to_req(batch, req_to_out_token_id)
has_new_finished_req = batch.mark_finished_req(self.eos_id, self.engine.max_output_len)
outputs = self._handle_finish_req(batch, has_new_finished_req)
return has_new_finished_req, outputs
def _handle_finish_req(self, batch: Batch, has_new_finished_req):
if has_new_finished_req:
finished_reqs = batch.filter_finished()
if batch.is_clear():
self._remove_batch(batch)
else:
self._filter_batch(batch)
return self._output_process(finished_reqs)
return None
def _output_process(self, finished_reqs: List[Req]):
"""
Process the output of a batch.
"""
outputs = []
for req in finished_reqs:
output = self.tokenizer.decode(req.output_ids)
outputs.append(RequestOutput(req.request_id, req.prompts, req.prompt_ids, output))
return outputs
def start_dynamic_batching(args, tp_engine, waiting_req_list):
try:
batch_manager = Async_DynamicBatchManager(
tp_engine=tp_engine,
max_total_token_num=args.max_total_token_num,
batch_max_tokens=args.batch_max_tokens,
eos_id=args.eos_id,
model=args.model,
log_stats=not args.disable_log_stats,
log_stats_interval=args.log_stats_interval,
waiting_req_list=waiting_req_list,
)
except Exception:
raise Exception
return batch_manager