Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

60 lines
1.9 KiB

from typing import Optional
class TensorParallelEnv(object):
_instance = None
def __new__(cls, *args, **kwargs):
if cls._instance is None:
cls._instance = object.__new__(cls, *args, **kwargs)
return cls._instance
def __init__(self, *args, **kwargs):
self.load(*args, **kwargs)
def load(
self,
mode: Optional[str] = None,
vocab_parallel: bool = False,
parallel_input_1d: bool = False,
summa_dim: int = None,
tesseract_dim: int = None,
tesseract_dep: int = None,
depth_3d: int = None,
input_group_3d=None,
weight_group_3d=None,
output_group_3d=None,
input_x_weight_group_3d=None,
output_x_weight_group_3d=None,
):
self.mode = mode
self.vocab_parallel = vocab_parallel
self.parallel_input_1d = parallel_input_1d
self.summa_dim = summa_dim
self.tesseract_dim = tesseract_dim
self.tesseract_dep = tesseract_dep
self.depth_3d = depth_3d
self.input_group_3d = input_group_3d
self.weight_group_3d = weight_group_3d
self.output_group_3d = output_group_3d
self.input_x_weight_group_3d = input_x_weight_group_3d
self.output_x_weight_group_3d = output_x_weight_group_3d
def save(self):
return dict(
mode=self.mode,
vocab_parallel=self.vocab_parallel,
parallel_input_1d=self.parallel_input_1d,
summa_dim=self.summa_dim,
tesseract_dim=self.tesseract_dim,
tesseract_dep=self.tesseract_dep,
depth_3d=self.depth_3d,
input_group_3d=self.input_group_3d,
weight_group_3d=self.weight_group_3d,
output_group_3d=self.output_group_3d,
input_x_weight_group_3d=self.input_x_weight_group_3d,
output_x_weight_group_3d=self.output_x_weight_group_3d,
)
tensor_parallel_env = TensorParallelEnv()