You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/ColossalChat/coati/models/base.py

59 lines
2.0 KiB

"""
Base class for critic and reward model
"""
from typing import Optional
import torch
import torch.nn as nn
from transformers import AutoModel, PretrainedConfig
class BaseModel(nn.Module):
"""
Actor model base class.
Args:
pretrained (str): path to pretrained model.
config (PretrainedConfig): PretrainedConfig used to initiate the base model.
**kwargs: all other kwargs as in AutoModel.from_pretrained
"""
def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None:
super().__init__()
if pretrained is not None:
if config is not None:
# initialize with config and load weights from pretrained
self.model = AutoModel.from_pretrained(pretrained, config=config, **kwargs)
else:
# initialize with pretrained
self.model = AutoModel.from_pretrained(pretrained, **kwargs)
elif config is not None:
# initialize with config
self.model = AutoModel.from_config(config, **kwargs)
else:
raise ValueError("Either pretrained or config must be provided.")
self.config = self.model.config
# create dummy input to get the size of the last hidden state
if "use_flash_attention_2" in kwargs:
self.model = self.model.cuda()
dummy_input = torch.zeros((1, 1), dtype=torch.long).to(self.model.device)
out = self.model(dummy_input)
self.last_hidden_state_size = out.last_hidden_state.shape[-1]
self.model = self.model.cpu()
# print("self.last_hidden_state_size: ",self.last_hidden_state_size)
def resize_token_embeddings(self, *args, **kwargs):
"""
Resize the token embeddings of the model.
Args:
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
The resized token embeddings.
"""
return self.model.resize_token_embeddings(*args, **kwargs)