mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
59 lines
2.0 KiB
59 lines
2.0 KiB
"""
|
|
Base class for critic and reward model
|
|
"""
|
|
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from transformers import AutoModel, PretrainedConfig
|
|
|
|
|
|
class BaseModel(nn.Module):
|
|
"""
|
|
Actor model base class.
|
|
|
|
Args:
|
|
pretrained (str): path to pretrained model.
|
|
config (PretrainedConfig): PretrainedConfig used to initiate the base model.
|
|
**kwargs: all other kwargs as in AutoModel.from_pretrained
|
|
"""
|
|
|
|
def __init__(self, pretrained: str = None, config: Optional[PretrainedConfig] = None, **kwargs) -> None:
|
|
super().__init__()
|
|
if pretrained is not None:
|
|
if config is not None:
|
|
# initialize with config and load weights from pretrained
|
|
self.model = AutoModel.from_pretrained(pretrained, config=config, **kwargs)
|
|
else:
|
|
# initialize with pretrained
|
|
self.model = AutoModel.from_pretrained(pretrained, **kwargs)
|
|
elif config is not None:
|
|
# initialize with config
|
|
self.model = AutoModel.from_config(config, **kwargs)
|
|
else:
|
|
raise ValueError("Either pretrained or config must be provided.")
|
|
|
|
self.config = self.model.config
|
|
# create dummy input to get the size of the last hidden state
|
|
if "use_flash_attention_2" in kwargs:
|
|
self.model = self.model.cuda()
|
|
dummy_input = torch.zeros((1, 1), dtype=torch.long).to(self.model.device)
|
|
out = self.model(dummy_input)
|
|
self.last_hidden_state_size = out.last_hidden_state.shape[-1]
|
|
self.model = self.model.cpu()
|
|
# print("self.last_hidden_state_size: ",self.last_hidden_state_size)
|
|
|
|
def resize_token_embeddings(self, *args, **kwargs):
|
|
"""
|
|
Resize the token embeddings of the model.
|
|
|
|
Args:
|
|
*args: Variable length argument list.
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
Returns:
|
|
The resized token embeddings.
|
|
"""
|
|
return self.model.resize_token_embeddings(*args, **kwargs)
|