You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/gemini/placement_policy.py

246 lines
10 KiB

import functools
from abc import ABC, abstractmethod
from time import time
from typing import Dict, List, Optional, Tuple, Type
import torch
from colossalai.gemini.chunk import Chunk, ChunkManager
from colossalai.gemini.memory_tracer import ChunkMemStatsCollector
from colossalai.utils import get_current_device
from colossalai.utils.memory import colo_device_memory_capacity
class PlacementPolicy(ABC):
need_mem_stats: bool = False
def __init__(self,
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None:
self.chunk_manager = chunk_manager
self.mem_stats_collector: Optional[ChunkMemStatsCollector] = mem_stats_collector
@abstractmethod
def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]:
raise NotImplementedError
@staticmethod
def get_default_device() -> torch.device:
return torch.device('cpu')
class CPUPlacementPolicy(PlacementPolicy):
def __init__(self,
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None:
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector)
def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]:
volume = 0
start = time()
for chunk in can_evict_chunks:
self.chunk_manager.release_chunk(chunk)
self.chunk_manager.move_chunk(chunk, torch.device('cpu'))
volume += chunk.chunk_mem
return volume, time() - start
class CUDAPlacementPolicy(PlacementPolicy):
def __init__(self,
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None:
assert torch.cuda.is_available(), 'Cannot use CUDATensorPlacementPolicy when CUDA is not available'
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector)
def evict_tensors(self, can_evict_chunks: List[Chunk], **kwargs) -> Tuple[int, float]:
return 0, 0
@staticmethod
def get_default_device() -> torch.device:
return get_current_device()
class AutoPlacementPolicy(PlacementPolicy):
need_mem_stats: bool = True
# model data will use 1-_warmup_non_model_data_ratio CUDA memory in warmup phase
# you can set them by AutoPlacementPolicy.set_warmup_non_model_data_ratio()
# and AutoPlacementPolicy.set_steady_cuda_cap_ratio()
_warmup_non_model_data_ratio: float = 0.8
_steady_cuda_cap_ratio: float = 0.9
def __init__(self,
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None:
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector)
def evict_tensors(self,
can_evict_chunks: List[Chunk],
cuda_demand: int = 0,
warmup: bool = True,
compute_list: Optional[List[Tuple[Chunk, ...]]] = None,
compute_idx: int = 0,
**kwargs) -> Tuple[int, float]:
"""
Evict tensors from CUDA device.
Args:
can_evict_chunks (List[StatefulTensor]): the list of tensors that can be evicted.
cuda_demand (int, optional): the volume of data needed on cuda device. Defaults to 0.
warmup (bool, optional): a flag indicates whether in the phase of warmup. Defaults to True.
compute_list (List[StatefulTensor], optional): TODO. Defaults to [].
compute_idx (int, optional): the idx of computing device. Defaults to 0.
Raises:
RuntimeError:
Returns:
int: the volume of memory that is evicted
"""
start = time()
cuda_capacity = colo_device_memory_capacity(get_current_device())
used_cuda_model_data = self.chunk_manager.total_mem['cuda']
if warmup:
# We designate a part of CUDA memory for model data in warmup iterations.
max_cuda_non_model_data_per_period = cuda_capacity * AutoPlacementPolicy._warmup_non_model_data_ratio
else:
# max non-model-data cuda memory consumption of this sampling moment and the next sampling moment.
max_cuda_non_model_data_per_period = self.mem_stats_collector.next_period_non_model_data_usage('cuda')
cuda_capacity *= AutoPlacementPolicy._steady_cuda_cap_ratio
total_cuda_model_data = cuda_capacity - max_cuda_non_model_data_per_period
avail_cuda_model_data = total_cuda_model_data - used_cuda_model_data
freed_cuda_model_data = 0
if avail_cuda_model_data < cuda_demand:
# Move cuda_demand - avail_cuda_model_data volume of tensors
# to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
to_free_cuda_model_data = cuda_demand - avail_cuda_model_data
to_free_chunks = can_evict_chunks
if not warmup:
to_free_chunks = self._sort_can_evict_chunks(tuple(to_free_chunks), compute_idx, tuple(compute_list))
# print(self._sort_can_evict_chunks.cache_info())
for chunk in to_free_chunks:
if freed_cuda_model_data >= to_free_cuda_model_data:
break
self.chunk_manager.release_chunk(chunk)
self.chunk_manager.move_chunk(chunk, torch.device('cpu'))
freed_cuda_model_data += chunk.chunk_mem
if freed_cuda_model_data < to_free_cuda_model_data:
raise RuntimeError(f"Adjust layout failed! No enough CUDA memory! "
f"Need {to_free_cuda_model_data}, freed {freed_cuda_model_data}")
return freed_cuda_model_data, time() - start
@staticmethod
@functools.lru_cache(maxsize=None)
def _sort_can_evict_chunks(can_evict_chunks: tuple, compute_idx: int, compute_list: tuple) -> list:
next_compute_idx = {chunk: len(compute_list) for chunk in can_evict_chunks}
for i in range(len(compute_list) - 1, compute_idx, -1):
for chunk in compute_list[i]:
if chunk in next_compute_idx:
next_compute_idx[chunk] = i
next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True)
return [t for (t, idx) in next_compute_idx]
@staticmethod
def set_warmup_non_model_data_ratio(ratio: float) -> None:
ratio = float(ratio)
assert 0.0 < ratio < 1.0
AutoPlacementPolicy._warmup_non_model_data_ratio = ratio
@staticmethod
def set_steady_cuda_cap_ratio(ratio: float) -> None:
ratio = float(ratio)
assert 0.0 < ratio < 1.0
AutoPlacementPolicy._steady_cuda_cap_ratio = ratio
class ConstPlacementPolicy(PlacementPolicy):
need_mem_stats: bool = False
_accessed_memory_boundary = 512 * 1024**2
def __init__(self,
chunk_manager: ChunkManager,
mem_stats_collector: Optional[ChunkMemStatsCollector] = None) -> None:
super().__init__(chunk_manager, mem_stats_collector=mem_stats_collector)
def evict_tensors(self,
can_evict_chunks: List[Chunk],
cuda_demand: int = 0,
warmup: bool = True,
compute_list: Optional[List[Tuple[Chunk, ...]]] = None,
compute_idx: int = 0,
**kwargs) -> Tuple[int, float]:
"""
See the docstrings in the class `AutoPlacementPolicy`.
"""
start = time()
used_accessed_memory = self.chunk_manager.accessed_mem
avail_accessed_memory = ConstPlacementPolicy._accessed_memory_boundary - used_accessed_memory
freed_accessed_memory = 0
if avail_accessed_memory < cuda_demand:
to_free_memory = cuda_demand - avail_accessed_memory
to_free_chunks = can_evict_chunks
if not warmup:
# sort all chunks
to_free_chunks = self._sort_can_evict_chunks(tuple(to_free_chunks), compute_idx, tuple(compute_list))
for chunk in to_free_chunks:
if freed_accessed_memory >= to_free_memory:
break
self.chunk_manager.release_chunk(chunk)
self.chunk_manager.move_chunk(chunk, torch.device('cpu'))
freed_accessed_memory += chunk.chunk_mem
if freed_accessed_memory < to_free_memory:
raise RuntimeError(f"Adjust layout failed! No enough CUDA memory! "
f"Need {to_free_memory}, freed {freed_accessed_memory}")
return freed_accessed_memory, time() - start
@staticmethod
@functools.lru_cache(maxsize=None)
def _sort_can_evict_chunks(can_evict_chunks: tuple, compute_idx: int, compute_list: tuple) -> list:
next_compute_idx = {chunk: len(compute_list) for chunk in can_evict_chunks}
for i in range(len(compute_list) - 1, compute_idx, -1):
for chunk in compute_list[i]:
if chunk in next_compute_idx:
next_compute_idx[chunk] = i
next_compute_idx = sorted(next_compute_idx.items(), key=lambda pair: pair[1], reverse=True)
return [t for (t, idx) in next_compute_idx]
@staticmethod
def set_const_memory_boundary(cuda_memory_mb: int) -> None:
boundary = int(cuda_memory_mb * 1024**2)
assert boundary > 0
ConstPlacementPolicy._accessed_memory_boundary = boundary
class PlacementPolicyFactory:
policies: Dict[str, Type[PlacementPolicy]] = {
'cpu': CPUPlacementPolicy,
'cuda': CUDAPlacementPolicy,
'auto': AutoPlacementPolicy,
'const': ConstPlacementPolicy
}
@staticmethod
def create(policy_name: str) -> Type[PlacementPolicy]:
if policy_name not in PlacementPolicyFactory.policies:
raise TypeError(f"Unknown tensor placement policy {policy_name}")
return PlacementPolicyFactory.policies[policy_name]
@staticmethod
def get_polocy_names():
return tuple(PlacementPolicyFactory.policies.keys())
@staticmethod
def get_default_device(policy_name: str) -> torch.device:
policy_cls = PlacementPolicyFactory.create(policy_name)
return policy_cls.get_default_device()