mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
3.7 KiB
98 lines
3.7 KiB
import copy
|
|
from functools import partial
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
|
|
import colossalai
|
|
from colossalai.amp import convert_to_apex_amp, convert_to_torch_amp
|
|
from colossalai.testing import assert_close_loose, rerun_if_address_is_in_use
|
|
from colossalai.utils import free_port
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
|
|
|
|
def run_torch_amp():
|
|
"""
|
|
In this test, we compare the torch amp and apex amp implemented in colossalai
|
|
"""
|
|
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.backends.cudnn.deterministic = True
|
|
|
|
# create layer
|
|
test_models = ['resnet18', 'simple_net']
|
|
for test_name in test_models:
|
|
get_component_func = non_distributed_component_funcs.get_callable(test_name)
|
|
model_builder, train_dataloader, _, optim_class, _ = get_component_func()
|
|
|
|
# create model
|
|
torch_amp_model = model_builder(checkpoint=True).cuda()
|
|
apex_amp_model = copy.deepcopy(torch_amp_model)
|
|
|
|
# create optimizer
|
|
# we use SGD here, since the correctness of gradient clipping can't be tested with Adam
|
|
torch_amp_optimizer = torch.optim.SGD(torch_amp_model.parameters(), lr=1e-3)
|
|
apex_amp_optimizer = torch.optim.SGD(apex_amp_model.parameters(), lr=1e-3)
|
|
|
|
# inject torch and apex amp
|
|
torch_amp_config = dict(init_scale=128, enabled=True)
|
|
torch_amp_model, torch_amp_optimizer, _ = convert_to_torch_amp(torch_amp_model,
|
|
torch_amp_optimizer,
|
|
amp_config=torch_amp_config)
|
|
apex_amp_config = dict(opt_level='O1', loss_scale=128)
|
|
apex_amp_model, apex_amp_optimizer = convert_to_apex_amp(apex_amp_model, apex_amp_optimizer, apex_amp_config)
|
|
|
|
# create data
|
|
data_iter = iter(train_dataloader)
|
|
data, label = next(data_iter)
|
|
data = data.cuda()
|
|
|
|
# forward pass
|
|
torch_amp_output = torch_amp_model(data)
|
|
apex_amp_output = apex_amp_model(data)
|
|
assert_close_loose(torch_amp_output, apex_amp_output)
|
|
|
|
for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()):
|
|
assert_close_loose(torch_amp_param, apex_amp_param)
|
|
|
|
# backward
|
|
# use sum() to get big gradient
|
|
torch_amp_optimizer.backward(torch_amp_output.sum())
|
|
apex_amp_optimizer.backward(apex_amp_output.sum())
|
|
|
|
# check grad
|
|
# In apex amp, grad is not scaled before backward, but torch amp does
|
|
for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()):
|
|
assert_close_loose(torch_amp_param.grad, apex_amp_param.grad * apex_amp_config['loss_scale'])
|
|
|
|
# clip gradient
|
|
apex_amp_optimizer.clip_grad_norm(model=apex_amp_model, max_norm=1.0)
|
|
torch_amp_optimizer.clip_grad_norm(model=torch_amp_model, max_norm=1.0)
|
|
|
|
# step
|
|
torch_amp_optimizer.step()
|
|
apex_amp_optimizer.step()
|
|
|
|
# check updated param and grad
|
|
for torch_amp_param, apex_amp_param in zip(torch_amp_model.parameters(), apex_amp_model.parameters()):
|
|
assert_close_loose(torch_amp_param.grad, apex_amp_param.grad)
|
|
assert_close_loose(torch_amp_param, apex_amp_param)
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
|
|
run_torch_amp()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
def test_torch_amp():
|
|
world_size = 1
|
|
run_func = partial(run_dist, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_torch_amp()
|