You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/inference/struct.py

404 lines
12 KiB

import enum
from dataclasses import dataclass
from typing import Any, List, Tuple, Union
import torch
from ordered_set import OrderedSet
from colossalai.inference.flash_decoding_utils import FDIntermTensors
from colossalai.logging import get_dist_logger
logger = get_dist_logger(__name__)
"""
The abstraction of request and sequence are defined here.
"""
class RequestStatus(enum.Enum):
"""
The status of Sentences
"""
# running status
WAITING = enum.auto()
RUNNING = enum.auto()
ABORTED = enum.auto()
# completion status
OVERLENGTH = enum.auto()
COMPLETED = enum.auto()
LENGTH_CAPPED = enum.auto()
# recycle status
RECYCLED = enum.auto()
@staticmethod
def is_finished(status: "RequestStatus") -> bool:
return status in [
RequestStatus.OVERLENGTH,
RequestStatus.COMPLETED,
RequestStatus.LENGTH_CAPPED,
]
@staticmethod
def is_running(status: "RequestStatus") -> bool:
return status == RequestStatus.RUNNING
@staticmethod
def is_waiting(status: "RequestStatus") -> bool:
return status == RequestStatus.WAITING
@dataclass
class Sequence:
"""Store information of input sequence.
Args:
request_id (int): The ID of input sequence.
prompt (str): The prompt of input sequence.
input_token_id (List[int]): The tokens ID of input sequence.
block_size (int): The block size of input sequence.
sample_params (SampleParams): The sample_params of input sequence.
block_table (torch.Tensor): The index of input sequence in block_table.
eos_token_id (int): The eos token id for this inference process.
pad_token_id (int): The pad token id for this inference process.
max_output_len (int): Maximum output length.
"""
request_id: int
prompt: str
input_token_id: List[int]
block_size: int
sample_params: Any # SampleParams needs to be imported later.
eos_token_id: int
pad_token_id: int
max_output_len: int = 256
def __post_init__(self):
self.output_token_id = []
self.status = RequestStatus.WAITING
@property
def sentence_len(self) -> int:
"""
Get length of current sentence.
"""
return len(self.input_token_id) + len(self.output_token_id)
@property
def input_len(self) -> int:
"""
Get length of input sentence.
"""
return len(self.input_token_id)
@property
def output_len(self) -> int:
"""
Get length of output sentence.
"""
return len(self.output_token_id)
def check_finish(self) -> bool:
"""
Check whether the inference is finished.
Returns:
bool: Whether the inference is finished.
"""
if RequestStatus.is_finished(self.status):
return True
if self.output_token_id:
if self.output_token_id[-1] == self.eos_token_id or self.output_len >= self.max_output_len:
self.status = RequestStatus.COMPLETED
return True
return False
def __hash__(self):
return hash(self.request_id)
def mark_running(self) -> None:
"""
Set status for prefill reqs.
"""
assert (
self.status == RequestStatus.WAITING or RequestStatus.RECYCLED
), "Sequence is not in WAITTING/RECYCLED STATUS"
self.status = RequestStatus.RUNNING
def mark_finished(self) -> None:
"""
Set status for finished reqs.
"""
self.status = RequestStatus.COMPLETED
def mark_aborted(self) -> None:
"""
Set status for aborted reqs.
"""
self.status = RequestStatus.ABORTED
def recycle(self) -> None:
"""
Recycle a running sequnce to waiitting list
"""
assert (
not self.check_finish() and not self.status == RequestStatus.ABORTED
), "The running sequence \
is already done but it still in running list"
self.status = RequestStatus.RECYCLED
def __repr__(self) -> str:
return (
f"(request_id={self.request_id}, "
f"prompt={self.prompt}, "
f"status={self.status.name}, "
f"sample_params={self.sample_params}, "
f"input_len={self.input_len},"
f"output_len={self.output_len})"
)
@dataclass
class BatchInfo:
"""
Information to be passed and used for a batch of sequences.
"""
max_batch_size: int
kv_max_split_num: int
num_heads: int
head_dim: int
sequences_set: OrderedSet[Sequence] = None
is_prompts: bool = True
device: torch.device = None
dtype: torch.dtype = None
fd_inter_tensor: FDIntermTensors = None
def __post_init__(self):
if self.device is None:
self.device = torch.cuda.current_device()
if self.sequences_set is None:
self.sequences_set = OrderedSet()
if self.fd_inter_tensor is None:
self.fd_inter_tensor = FDIntermTensors()
def init_fd_tensors(self):
if not self.fd_inter_tensor.is_initialized:
self.fd_inter_tensor.initialize(
max_batch_size=self.max_batch_size,
num_attn_heads=self.num_heads,
kv_max_split_num=self.kv_max_split_num,
head_dim=self.head_dim,
dtype=self.dtype,
device=self.device,
)
def get_block_table_tensor(self) -> None:
tesnor_list = []
block_table = None
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
for seq in self.sequences_set:
block_table = seq.block_table
assert (
block_table is not None
), f"The sequence(request_id {seq.request_id}) has not initialized the block_table."
tesnor_list.append(seq.block_table)
block_table = torch.stack(tesnor_list)
return block_table
def clear_batch(self) -> None:
"""
Clear sequence set and block table if we need to abort this batch.
Prefill: clear sequence set and move them to running batch(external)
Decoding: mark unfinished sequences as aborted.
"""
if self.is_prompts:
self.sequences_set.clear()
else:
for seq in self.sequences_set:
seq.mark_aborted()
if seq.check_finish():
seq.mark_finished()
self.sequences_set.clear()
def fliter_batch(self) -> List["Sequence"]:
"""
Remove completed sentences from a batch.
Returns:
List["Sequence"]: List of finished sequences.
"""
finish_seqs = []
for seq in self.sequences_set:
if seq.check_finish():
finish_seqs.append(seq)
for finish_seq in finish_seqs:
self.sequences_set.discard(finish_seq)
return finish_seqs
def abort_seq(self, seq: "Sequence") -> "Sequence":
"""
Remove sequence from the batch.
"""
if not seq.check_finish():
seq.status = RequestStatus.ABORTED
self.sequences_set.discard(seq)
return seq
def add_seqs(self, seqs: Union[Sequence, List[Sequence]]) -> None:
"""
Add new sequence to batch
Args:
seqs (List["Sequence"]): The list of new sequences.
"""
# covnert single sequence to list
if isinstance(seqs, Sequence):
seqs = [seqs]
for seq in seqs:
if seq in self.sequences_set:
logger.warning(f"The sequence(request_id {seq.request_id}) is already in sequences_set.")
continue
self.sequences_set.add(seq)
def del_seq(self, seq: Sequence) -> Sequence:
"""
Delete sequence in batch
"""
self.sequences_set.discard(seq)
@property
def is_empty(self) -> None:
"""
Check whether sequences_set is empty.
"""
return not self.sequences_set
def update_batch_tokens(self, tokens: Union[List[int], List[List[int]], torch.Tensor]) -> None:
"""
Add an output token for each sentence in the batch.
Args:
tokens (List[int]): A batch of tokens
"""
if isinstance(tokens, torch.Tensor):
tokens = tokens.tolist()
assert self.get_batch_size() == len(tokens), "The number of tokens does not match batch_size."
for seq, token in zip(self.sequences_set, tokens):
if not isinstance(token, list):
if not isinstance(token, int):
raise TypeError(f"The token type must be List[int] or int, but got {type(token)}.")
token = [token]
seq.output_token_id += token
seq.check_finish()
def get_batch_size(self) -> int:
"""
Get batch_size of this batch
"""
return len(self.sequences_set)
def get_batch_inputs(self) -> torch.LongTensor:
"""
Get bacth inputs for forward inference computation.
"""
input_list = []
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
for seq in self.sequences_set:
if self.is_prompts:
if seq.output_len > 0:
input_list.append(seq.input_token_id + seq.output_token_id)
else:
input_list.append(seq.input_token_id)
else:
input_list.append([seq.output_token_id[-1]])
max_seq_len = max(len(sub_list) for sub_list in input_list)
# We assume that all the padding_id in seq are the same at present.
return _make_tensor_with_pad(input_list, max_seq_len, self.sequences_set[0].pad_token_id, dtype=torch.int)
def get_1D_inputs(self) -> Tuple[torch.LongTensor, torch.Tensor]:
"""
Flattening the input tokens.
"""
input_list = []
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
for seq in self.sequences_set:
if self.is_prompts:
input_list.extend(seq.input_token_id)
else:
input_list.append(seq.output_token_id[-1])
return torch.tensor(input_list, dtype=torch.long, device=self.device)
def get_sequence_lengths(self):
"""
Get the input_len of each sentence in this batch.
"""
len_list = []
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
for seq in self.sequences_set:
len_list.append(seq.sentence_len)
return torch.tensor(len_list, dtype=torch.int, device=self.device)
def get_attn_mask(self) -> torch.Tensor:
"""
Generate and return attention mask.
"""
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
past_values = []
# We assume that all the padding_id in seq are the same at present.
padding_id = self.sequences_set[0].pad_token_id
for seq in self.sequences_set:
past_values.append(seq.input_token_id + seq.output_token_id)
max_seq_len = max(len(sub_list) for sub_list in past_values)
attn_mask = _make_tensor_with_pad(
past_values, max_seq_len, self.sequences_set[0].pad_token_id, dtype=torch.int, device=self.device
)
return attn_mask.ne(padding_id).long()
def __repr__(self) -> str:
return f"(sequences_set={self.sequences_set}, " f"is_prompts={self.is_prompts})"
def _pad_to_max(x: List[int], max_len: int, pad: int) -> List[int]:
assert len(x) <= max_len
return [pad] * (max_len - len(x)) + x
def _make_tensor_with_pad(
x: Union[List[List[int]], List[int]],
max_len: int,
pad: int,
dtype: torch.dtype,
device: Union[str, torch.device] = "cuda",
pin_memory: bool = False,
):
padded_x = [_pad_to_max(x_i, max_len, pad) for x_i in x]
return torch.tensor(padded_x, dtype=dtype, device=device, pin_memory=pin_memory and str(device) == "cpu")