mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
404 lines
12 KiB
404 lines
12 KiB
import enum
|
|
from dataclasses import dataclass
|
|
from typing import Any, List, Tuple, Union
|
|
|
|
import torch
|
|
from ordered_set import OrderedSet
|
|
|
|
from colossalai.inference.flash_decoding_utils import FDIntermTensors
|
|
from colossalai.logging import get_dist_logger
|
|
|
|
logger = get_dist_logger(__name__)
|
|
|
|
"""
|
|
The abstraction of request and sequence are defined here.
|
|
"""
|
|
|
|
|
|
class RequestStatus(enum.Enum):
|
|
"""
|
|
The status of Sentences
|
|
"""
|
|
|
|
# running status
|
|
WAITING = enum.auto()
|
|
RUNNING = enum.auto()
|
|
ABORTED = enum.auto()
|
|
|
|
# completion status
|
|
OVERLENGTH = enum.auto()
|
|
COMPLETED = enum.auto()
|
|
LENGTH_CAPPED = enum.auto()
|
|
|
|
# recycle status
|
|
RECYCLED = enum.auto()
|
|
|
|
@staticmethod
|
|
def is_finished(status: "RequestStatus") -> bool:
|
|
return status in [
|
|
RequestStatus.OVERLENGTH,
|
|
RequestStatus.COMPLETED,
|
|
RequestStatus.LENGTH_CAPPED,
|
|
]
|
|
|
|
@staticmethod
|
|
def is_running(status: "RequestStatus") -> bool:
|
|
return status == RequestStatus.RUNNING
|
|
|
|
@staticmethod
|
|
def is_waiting(status: "RequestStatus") -> bool:
|
|
return status == RequestStatus.WAITING
|
|
|
|
|
|
@dataclass
|
|
class Sequence:
|
|
"""Store information of input sequence.
|
|
|
|
Args:
|
|
request_id (int): The ID of input sequence.
|
|
prompt (str): The prompt of input sequence.
|
|
input_token_id (List[int]): The tokens ID of input sequence.
|
|
block_size (int): The block size of input sequence.
|
|
sample_params (SampleParams): The sample_params of input sequence.
|
|
block_table (torch.Tensor): The index of input sequence in block_table.
|
|
eos_token_id (int): The eos token id for this inference process.
|
|
pad_token_id (int): The pad token id for this inference process.
|
|
max_output_len (int): Maximum output length.
|
|
"""
|
|
|
|
request_id: int
|
|
prompt: str
|
|
input_token_id: List[int]
|
|
block_size: int
|
|
sample_params: Any # SampleParams needs to be imported later.
|
|
eos_token_id: int
|
|
pad_token_id: int
|
|
max_output_len: int = 256
|
|
|
|
def __post_init__(self):
|
|
self.output_token_id = []
|
|
self.status = RequestStatus.WAITING
|
|
|
|
@property
|
|
def sentence_len(self) -> int:
|
|
"""
|
|
Get length of current sentence.
|
|
"""
|
|
return len(self.input_token_id) + len(self.output_token_id)
|
|
|
|
@property
|
|
def input_len(self) -> int:
|
|
"""
|
|
Get length of input sentence.
|
|
"""
|
|
return len(self.input_token_id)
|
|
|
|
@property
|
|
def output_len(self) -> int:
|
|
"""
|
|
Get length of output sentence.
|
|
"""
|
|
return len(self.output_token_id)
|
|
|
|
def check_finish(self) -> bool:
|
|
"""
|
|
Check whether the inference is finished.
|
|
|
|
Returns:
|
|
bool: Whether the inference is finished.
|
|
"""
|
|
if RequestStatus.is_finished(self.status):
|
|
return True
|
|
|
|
if self.output_token_id:
|
|
if self.output_token_id[-1] == self.eos_token_id or self.output_len >= self.max_output_len:
|
|
self.status = RequestStatus.COMPLETED
|
|
return True
|
|
|
|
return False
|
|
|
|
def __hash__(self):
|
|
return hash(self.request_id)
|
|
|
|
def mark_running(self) -> None:
|
|
"""
|
|
Set status for prefill reqs.
|
|
"""
|
|
assert (
|
|
self.status == RequestStatus.WAITING or RequestStatus.RECYCLED
|
|
), "Sequence is not in WAITTING/RECYCLED STATUS"
|
|
self.status = RequestStatus.RUNNING
|
|
|
|
def mark_finished(self) -> None:
|
|
"""
|
|
Set status for finished reqs.
|
|
"""
|
|
self.status = RequestStatus.COMPLETED
|
|
|
|
def mark_aborted(self) -> None:
|
|
"""
|
|
Set status for aborted reqs.
|
|
"""
|
|
self.status = RequestStatus.ABORTED
|
|
|
|
def recycle(self) -> None:
|
|
"""
|
|
Recycle a running sequnce to waiitting list
|
|
"""
|
|
assert (
|
|
not self.check_finish() and not self.status == RequestStatus.ABORTED
|
|
), "The running sequence \
|
|
is already done but it still in running list"
|
|
self.status = RequestStatus.RECYCLED
|
|
|
|
def __repr__(self) -> str:
|
|
return (
|
|
f"(request_id={self.request_id}, "
|
|
f"prompt={self.prompt}, "
|
|
f"status={self.status.name}, "
|
|
f"sample_params={self.sample_params}, "
|
|
f"input_len={self.input_len},"
|
|
f"output_len={self.output_len})"
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class BatchInfo:
|
|
"""
|
|
Information to be passed and used for a batch of sequences.
|
|
"""
|
|
|
|
max_batch_size: int
|
|
kv_max_split_num: int
|
|
num_heads: int
|
|
head_dim: int
|
|
sequences_set: OrderedSet[Sequence] = None
|
|
is_prompts: bool = True
|
|
device: torch.device = None
|
|
dtype: torch.dtype = None
|
|
fd_inter_tensor: FDIntermTensors = None
|
|
|
|
def __post_init__(self):
|
|
if self.device is None:
|
|
self.device = torch.cuda.current_device()
|
|
if self.sequences_set is None:
|
|
self.sequences_set = OrderedSet()
|
|
if self.fd_inter_tensor is None:
|
|
self.fd_inter_tensor = FDIntermTensors()
|
|
|
|
def init_fd_tensors(self):
|
|
if not self.fd_inter_tensor.is_initialized:
|
|
self.fd_inter_tensor.initialize(
|
|
max_batch_size=self.max_batch_size,
|
|
num_attn_heads=self.num_heads,
|
|
kv_max_split_num=self.kv_max_split_num,
|
|
head_dim=self.head_dim,
|
|
dtype=self.dtype,
|
|
device=self.device,
|
|
)
|
|
|
|
def get_block_table_tensor(self) -> None:
|
|
tesnor_list = []
|
|
block_table = None
|
|
|
|
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
|
|
|
|
for seq in self.sequences_set:
|
|
block_table = seq.block_table
|
|
assert (
|
|
block_table is not None
|
|
), f"The sequence(request_id {seq.request_id}) has not initialized the block_table."
|
|
tesnor_list.append(seq.block_table)
|
|
|
|
block_table = torch.stack(tesnor_list)
|
|
return block_table
|
|
|
|
def clear_batch(self) -> None:
|
|
"""
|
|
Clear sequence set and block table if we need to abort this batch.
|
|
Prefill: clear sequence set and move them to running batch(external)
|
|
Decoding: mark unfinished sequences as aborted.
|
|
"""
|
|
if self.is_prompts:
|
|
self.sequences_set.clear()
|
|
else:
|
|
for seq in self.sequences_set:
|
|
seq.mark_aborted()
|
|
if seq.check_finish():
|
|
seq.mark_finished()
|
|
|
|
self.sequences_set.clear()
|
|
|
|
def fliter_batch(self) -> List["Sequence"]:
|
|
"""
|
|
Remove completed sentences from a batch.
|
|
|
|
Returns:
|
|
List["Sequence"]: List of finished sequences.
|
|
"""
|
|
finish_seqs = []
|
|
for seq in self.sequences_set:
|
|
if seq.check_finish():
|
|
finish_seqs.append(seq)
|
|
for finish_seq in finish_seqs:
|
|
self.sequences_set.discard(finish_seq)
|
|
return finish_seqs
|
|
|
|
def abort_seq(self, seq: "Sequence") -> "Sequence":
|
|
"""
|
|
Remove sequence from the batch.
|
|
"""
|
|
if not seq.check_finish():
|
|
seq.status = RequestStatus.ABORTED
|
|
self.sequences_set.discard(seq)
|
|
return seq
|
|
|
|
def add_seqs(self, seqs: Union[Sequence, List[Sequence]]) -> None:
|
|
"""
|
|
Add new sequence to batch
|
|
|
|
Args:
|
|
seqs (List["Sequence"]): The list of new sequences.
|
|
"""
|
|
# covnert single sequence to list
|
|
if isinstance(seqs, Sequence):
|
|
seqs = [seqs]
|
|
|
|
for seq in seqs:
|
|
if seq in self.sequences_set:
|
|
logger.warning(f"The sequence(request_id {seq.request_id}) is already in sequences_set.")
|
|
continue
|
|
self.sequences_set.add(seq)
|
|
|
|
def del_seq(self, seq: Sequence) -> Sequence:
|
|
"""
|
|
Delete sequence in batch
|
|
"""
|
|
self.sequences_set.discard(seq)
|
|
|
|
@property
|
|
def is_empty(self) -> None:
|
|
"""
|
|
Check whether sequences_set is empty.
|
|
"""
|
|
return not self.sequences_set
|
|
|
|
def update_batch_tokens(self, tokens: Union[List[int], List[List[int]], torch.Tensor]) -> None:
|
|
"""
|
|
Add an output token for each sentence in the batch.
|
|
|
|
Args:
|
|
tokens (List[int]): A batch of tokens
|
|
"""
|
|
|
|
if isinstance(tokens, torch.Tensor):
|
|
tokens = tokens.tolist()
|
|
|
|
assert self.get_batch_size() == len(tokens), "The number of tokens does not match batch_size."
|
|
|
|
for seq, token in zip(self.sequences_set, tokens):
|
|
if not isinstance(token, list):
|
|
if not isinstance(token, int):
|
|
raise TypeError(f"The token type must be List[int] or int, but got {type(token)}.")
|
|
token = [token]
|
|
seq.output_token_id += token
|
|
seq.check_finish()
|
|
|
|
def get_batch_size(self) -> int:
|
|
"""
|
|
Get batch_size of this batch
|
|
"""
|
|
return len(self.sequences_set)
|
|
|
|
def get_batch_inputs(self) -> torch.LongTensor:
|
|
"""
|
|
Get bacth inputs for forward inference computation.
|
|
"""
|
|
|
|
input_list = []
|
|
|
|
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
|
|
|
|
for seq in self.sequences_set:
|
|
if self.is_prompts:
|
|
if seq.output_len > 0:
|
|
input_list.append(seq.input_token_id + seq.output_token_id)
|
|
else:
|
|
input_list.append(seq.input_token_id)
|
|
else:
|
|
input_list.append([seq.output_token_id[-1]])
|
|
|
|
max_seq_len = max(len(sub_list) for sub_list in input_list)
|
|
|
|
# We assume that all the padding_id in seq are the same at present.
|
|
return _make_tensor_with_pad(input_list, max_seq_len, self.sequences_set[0].pad_token_id, dtype=torch.int)
|
|
|
|
def get_1D_inputs(self) -> Tuple[torch.LongTensor, torch.Tensor]:
|
|
"""
|
|
Flattening the input tokens.
|
|
"""
|
|
input_list = []
|
|
|
|
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
|
|
|
|
for seq in self.sequences_set:
|
|
if self.is_prompts:
|
|
input_list.extend(seq.input_token_id)
|
|
else:
|
|
input_list.append(seq.output_token_id[-1])
|
|
|
|
return torch.tensor(input_list, dtype=torch.long, device=self.device)
|
|
|
|
def get_sequence_lengths(self):
|
|
"""
|
|
Get the input_len of each sentence in this batch.
|
|
"""
|
|
len_list = []
|
|
|
|
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
|
|
|
|
for seq in self.sequences_set:
|
|
len_list.append(seq.sentence_len)
|
|
|
|
return torch.tensor(len_list, dtype=torch.int, device=self.device)
|
|
|
|
def get_attn_mask(self) -> torch.Tensor:
|
|
"""
|
|
Generate and return attention mask.
|
|
"""
|
|
assert len(self.sequences_set) > 0, "Batch has not been initialized yet. Please initialize batch first."
|
|
|
|
past_values = []
|
|
# We assume that all the padding_id in seq are the same at present.
|
|
padding_id = self.sequences_set[0].pad_token_id
|
|
|
|
for seq in self.sequences_set:
|
|
past_values.append(seq.input_token_id + seq.output_token_id)
|
|
|
|
max_seq_len = max(len(sub_list) for sub_list in past_values)
|
|
attn_mask = _make_tensor_with_pad(
|
|
past_values, max_seq_len, self.sequences_set[0].pad_token_id, dtype=torch.int, device=self.device
|
|
)
|
|
|
|
return attn_mask.ne(padding_id).long()
|
|
|
|
def __repr__(self) -> str:
|
|
return f"(sequences_set={self.sequences_set}, " f"is_prompts={self.is_prompts})"
|
|
|
|
|
|
def _pad_to_max(x: List[int], max_len: int, pad: int) -> List[int]:
|
|
assert len(x) <= max_len
|
|
return [pad] * (max_len - len(x)) + x
|
|
|
|
|
|
def _make_tensor_with_pad(
|
|
x: Union[List[List[int]], List[int]],
|
|
max_len: int,
|
|
pad: int,
|
|
dtype: torch.dtype,
|
|
device: Union[str, torch.device] = "cuda",
|
|
pin_memory: bool = False,
|
|
):
|
|
padded_x = [_pad_to_max(x_i, max_len, pad) for x_i in x]
|
|
return torch.tensor(padded_x, dtype=dtype, device=device, pin_memory=pin_memory and str(device) == "cpu")
|