mirror of https://github.com/hpcaitech/ColossalAI
172 lines
7.8 KiB
Python
172 lines
7.8 KiB
Python
"""
|
|
Our config contains various options for inference optimization, it is a unified API that wraps all the configurations for inference.
|
|
"""
|
|
|
|
import logging
|
|
from dataclasses import dataclass
|
|
from typing import Optional, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from transformers.generation import GenerationConfig
|
|
|
|
GibiByte = 1024**3
|
|
|
|
logger = logging.Logger(__name__)
|
|
|
|
_DTYPE_MAPPING = {
|
|
"fp16": torch.float16,
|
|
"bf16": torch.bfloat16,
|
|
"fp32": torch.float32,
|
|
}
|
|
|
|
_ALLOWED_DTYPES = [torch.float16, torch.bfloat16, torch.float32]
|
|
|
|
_DEFAULT_PROMPT_TEMPLATES = {
|
|
"llama": "[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n{input_text}[/INST]",
|
|
"vicuna": "USER: {input_text}\n\nASSISTANT: ",
|
|
}
|
|
|
|
|
|
@dataclass
|
|
class InputMetaData:
|
|
"""The input info for a single step
|
|
|
|
Args:
|
|
block_tables (torch.Tensor, optional): Sequences' BlockTables Defaults to None.
|
|
sequence_lengths (torch.Tensor): A tensor containing sequence lengths.
|
|
fd_inter_tensor (torch.Tensor, optional): A tensor representing intermediate data for flash decoding. Defaults to None.
|
|
batch_size (int, optional): The current batch size. Defaults to 64.
|
|
is_prompts (bool, optional): Indicates whether prefill or decoding. Defaults to False(decoding).
|
|
use_cuda_graph (bool, optional): Indicates whether to use the CUDA graph. Defaults to False.
|
|
kv_seq_len (int, optional): Key-value sequence length. Defaults to 512.
|
|
head_dim (int, optional): Head dimension. Defaults to 32.
|
|
"""
|
|
|
|
block_tables: torch.Tensor = None
|
|
sequence_lengths: torch.Tensor = None
|
|
fd_inter_tensor: torch.Tensor = None
|
|
batch_size: int = 64 # current_batch_size
|
|
is_prompts: bool = False
|
|
use_cuda_graph: bool = False
|
|
kv_seq_len: int = 512
|
|
head_dim: int = 32
|
|
|
|
|
|
@dataclass
|
|
class InferenceConfig:
|
|
"""The inference configuration.
|
|
|
|
Args:
|
|
max_batch_size (int): Maximum batch size, defaults to 8.
|
|
max_output_len (int): Maximum output length, defaults to 256.
|
|
max_input_len (int): Maximum input length, defaults to 256.
|
|
dtype (Union[str, torch.dtype]): The data type for weights and activations.
|
|
prompt_template (Optional[str]): The prompt template for generation, defaults to None.
|
|
do_sample (bool): Whether to use sampling for generation, defaults to False.
|
|
beam_width (int): The maximum beam width used to initialize KV Cache, defaults to 1.
|
|
During generation, the beam width provided as sampling parameter should be less than or equivalent to this value.
|
|
prefill_ratio (Optional[float]): A controling ratio for prefill and decoding in running list, defaults to 1.2. We will do a step of prefill
|
|
when the actual value exceeds this ratio.
|
|
pad_input: Whether to pad all inputs to the max length.
|
|
early_stopping (Optional[bool]): Whether to stop the generation when all beam hypotheses have finished or not, defaults to False.
|
|
top_k (Optional[int]): The number of highest probability vocabulary tokens to keep for top-k-filtering, defaults to None.
|
|
top_p (Optional[float]): The cumulative probability threshold for retaining tokens with a total probability above it, defaults to None.
|
|
min_p (Optional[float]): The minimum probability to keep for top-p filtering, defaults to None.
|
|
block_size (int): The number of blocks in a logical block, defaults to 16.
|
|
tp_size (int): Tensor parallel size, defaults to 1.
|
|
pp_size (int): Pipeline parallel size, defaults to 1.
|
|
micro_batch_size (int): the micro batch size, defaults to 1. Only useful when `pp_size` > 1.
|
|
micro_batch_buffer_size (int): the buffer size for micro batch. Normally, it should be the same as the number of pipeline stages.
|
|
use_cuda_graph (bool): Whether to enforce CUDA graph execution. If False, we will disable CUDA graph and always execute the model in eager mode. If True, we will use eager execution in hybrid.
|
|
max_context_len_to_capture (int): max context len that could be captured by CUDA Graph, per sequence
|
|
|
|
"""
|
|
|
|
# NOTE: arrange configs according to their importance and frequency of usage
|
|
|
|
# runtime limit
|
|
max_batch_size: int = 8
|
|
max_output_len: int = 256
|
|
max_input_len: int = 256
|
|
|
|
# general configs
|
|
dtype: Union[str, torch.dtype] = torch.float16 # use fp16 by default
|
|
|
|
# generation configs
|
|
prompt_template: Optional[str] = None
|
|
do_sample: bool = False
|
|
beam_width: int = 1 # TODO: beam search is not support for now
|
|
prefill_ratio: Optional[
|
|
float
|
|
] = 1.2 # the ratio of prefill sequences to decoding sequences, we do prefill step once the actual value exceeds ratio
|
|
pad_input: bool = False
|
|
early_stopping: Optional[bool] = False
|
|
top_k: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
min_p: Optional[float] = None
|
|
|
|
# paged attention configs
|
|
block_size: int = 16
|
|
|
|
# model parallelism configs
|
|
tp_size: int = 1
|
|
pp_size: int = 1
|
|
micro_batch_size: int = 1
|
|
micro_batch_buffer_size: int = None
|
|
|
|
# cuda_graph
|
|
use_cuda_graph: bool = False
|
|
max_context_len_to_capture: int = max_input_len * max_output_len
|
|
|
|
def __post_init__(self):
|
|
self._verify_config()
|
|
|
|
def _verify_config(self) -> None:
|
|
"""
|
|
Verify the input config
|
|
"""
|
|
# check dtype
|
|
if isinstance(self.dtype, str):
|
|
# convert string dtype to torch dtype
|
|
assert (
|
|
self.dtype in _DTYPE_MAPPING
|
|
), f"Expected the dtype string argument to be in {list(_DTYPE_MAPPING.keys())} but found an unknown dtype: {self.dtype}"
|
|
self.dtype = _DTYPE_MAPPING[self.dtype]
|
|
assert (
|
|
self.dtype in _ALLOWED_DTYPES
|
|
), f"Expected dtype to be in {_ALLOWED_DTYPES} but found an unknown dtype: {self.dtype}"
|
|
|
|
# check distributed
|
|
assert (not torch.distributed.is_initialized() and self.tp_size * self.pp_size == 1) or (
|
|
self.tp_size * self.pp_size == dist.get_world_size()
|
|
), f"TP size({self.tp_size}) * PP size({self.pp_size}) should be equal to the global world size ({dist.get_world_size()})"
|
|
# check prompt template
|
|
if self.prompt_template is None:
|
|
return
|
|
|
|
if self.prompt_template in _DEFAULT_PROMPT_TEMPLATES:
|
|
self.prompt_template = _DEFAULT_PROMPT_TEMPLATES[self.prompt_template]
|
|
else:
|
|
# make sure the template can be formatted with input_text
|
|
assert (
|
|
"{input_text}" in self.prompt_template
|
|
), "The prompt template should contain '{input_text}' for formatting the input text. For example: 'USER: {input_text}\n\nASSISTANT: '"
|
|
|
|
def to_generation_config(self, model_config) -> GenerationConfig:
|
|
meta_config = {
|
|
"max_length": self.max_input_len + self.max_output_len,
|
|
"max_new_tokens": self.max_output_len,
|
|
"early_stopping": self.early_stopping,
|
|
"do_sample": self.do_sample,
|
|
"num_beams": self.beam_width,
|
|
}
|
|
for type in ["top_k", "top_p", "min_p"]:
|
|
if hasattr(self, type):
|
|
meta_config[type] = getattr(self, type)
|
|
for type in ["pad_token_id", "bos_token_id", "eos_token_id"]:
|
|
if hasattr(model_config, type):
|
|
meta_config[type] = getattr(model_config, type)
|
|
|
|
return GenerationConfig.from_dict(meta_config)
|