You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/applications/Chat/examples/train_sft.py

222 lines
8.8 KiB

import argparse
import math
import warnings
import torch
import torch.distributed as dist
from coati.dataset import SFTDataset, SupervisedDataset
from coati.models.bloom import BLOOMActor
from coati.models.chatglm import ChatGLMActor
from coati.models.chatglm.chatglm_tokenizer import ChatGLMTokenizer
from coati.models.gpt import GPTActor
from coati.models.llama import LlamaActor
from coati.models.opt import OPTActor
from coati.trainer import SFTTrainer
from coati.trainer.strategies import DDPStrategy, GeminiStrategy, LowLevelZeroStrategy
from datasets import load_dataset
from torch.optim import Adam
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from transformers import AutoTokenizer, BloomTokenizerFast, LlamaTokenizer
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer
from transformers.trainer import get_scheduler
from colossalai.logging import get_dist_logger
from colossalai.nn.optimizer import HybridAdam
def train(args):
# configure strategy
if args.strategy == "ddp":
strategy = DDPStrategy()
elif args.strategy == "colossalai_gemini":
strategy = GeminiStrategy(placement_policy="auto")
elif args.strategy == "colossalai_zero2":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cuda")
elif args.strategy == "colossalai_zero2_cpu":
strategy = LowLevelZeroStrategy(stage=2, placement_policy="cpu")
else:
raise ValueError(f'Unsupported strategy "{args.strategy}"')
# configure model
if args.lora_rank > 0:
warnings.warn("Lora is not supported yet.")
args.lora_rank = 0
with strategy.model_init_context():
if args.model == "bloom":
model = BLOOMActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "opt":
model = OPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "gpt2":
model = GPTActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "llama":
model = LlamaActor(pretrained=args.pretrain, lora_rank=args.lora_rank, checkpoint=args.grad_checkpoint)
elif args.model == "chatglm":
model = ChatGLMActor(pretrained=args.pretrain)
else:
raise ValueError(f'Unsupported model "{args.model}"')
model.to(torch.bfloat16).to(torch.cuda.current_device())
# configure tokenizer
if args.model == "gpt2":
tokenizer = GPT2Tokenizer.from_pretrained("gpt2" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "bloom":
tokenizer = BloomTokenizerFast.from_pretrained(
"bigscience/bloom-560m" if args.tokenizer is None else args.tokenizer
)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "opt":
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m" if args.tokenizer is None else args.tokenizer)
tokenizer.pad_token = tokenizer.eos_token
elif args.model == "llama":
tokenizer = LlamaTokenizer.from_pretrained(
"hf-internal-testing/llama-tokenizer" if args.tokenizer is None else args.tokenizer
)
tokenizer.eos_token = "</s>"
tokenizer.pad_token = tokenizer.unk_token
elif args.model == "chatglm":
tokenizer = ChatGLMTokenizer.from_pretrained(
"THUDM/chatglm-6b" if args.tokenizer is None else args.tokenizer, trust_remote_code=True
)
else:
raise ValueError(f'Unsupported model "{args.model}"')
# configure optimizer
if args.strategy.startswith("colossalai"):
optim = HybridAdam(model.parameters(), lr=args.lr, clipping_norm=1.0)
else:
optim = Adam(model.parameters(), lr=args.lr)
# configure dataset
if args.dataset == "yizhongw/self_instruct":
train_data = load_dataset(args.dataset, "super_natural_instructions", split="train")
eval_data = load_dataset(args.dataset, "super_natural_instructions", split="test")
if args.max_datasets_size is not None:
train_data = train_data.select(range(min(args.max_datasets_size, len(train_data))))
eval_data = eval_data.select(range(min(args.max_datasets_size, len(eval_data))))
train_dataset = SFTDataset(train_data, tokenizer, args.max_len)
eval_dataset = SFTDataset(eval_data, tokenizer, args.max_len)
else:
train_dataset = SupervisedDataset(
tokenizer=tokenizer,
data_path=args.dataset,
max_datasets_size=args.max_datasets_size,
max_length=args.max_len,
)
eval_dataset = None
if dist.is_initialized() and dist.get_world_size() > 1:
train_sampler = DistributedSampler(
train_dataset,
shuffle=True,
seed=42,
drop_last=True,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
)
if eval_dataset is not None:
eval_sampler = DistributedSampler(
eval_dataset,
shuffle=False,
seed=42,
drop_last=False,
rank=dist.get_rank(),
num_replicas=dist.get_world_size(),
)
else:
train_sampler = None
eval_sampler = None
train_dataloader = DataLoader(
train_dataset,
shuffle=(train_sampler is None),
sampler=train_sampler,
batch_size=args.batch_size,
pin_memory=True,
)
if eval_dataset is not None:
eval_dataloader = DataLoader(
eval_dataset,
shuffle=(eval_sampler is None),
sampler=eval_sampler,
batch_size=args.batch_size,
pin_memory=True,
)
else:
eval_dataloader = None
num_update_steps_per_epoch = len(train_dataloader) // args.accumulation_steps
max_steps = math.ceil(args.max_epochs * num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
"cosine", optim, num_warmup_steps=math.ceil(max_steps * 0.03), num_training_steps=max_steps
)
strategy_dict = strategy.prepare(dict(model=model, optimizer=optim, lr_scheduler=lr_scheduler))
model = strategy_dict["model"]
optim = strategy_dict["optimizer"]
lr_scheduler = strategy_dict["lr_scheduler"]
trainer = SFTTrainer(
model=model,
strategy=strategy,
optim=optim,
lr_scheduler=lr_scheduler,
max_epochs=args.max_epochs,
accumulation_steps=args.accumulation_steps,
)
logger = get_dist_logger()
trainer.fit(
train_dataloader=train_dataloader,
eval_dataloader=eval_dataloader,
logger=logger,
log_dir=args.log_dir,
use_wandb=args.use_wandb,
)
if args.lora_rank > 0 and args.merge_lora_weights:
from coati.models.lora import LORA_MANAGER
# NOTE: set model to eval to merge LoRA weights
LORA_MANAGER.merge_weights = True
model.eval()
# save model checkpoint after fitting on only rank0
strategy.save_pretrained(model, path=args.save_path, tokenizer=tokenizer)
# save optimizer checkpoint on all ranks
if args.need_optim_ckpt:
strategy.save_optimizer(
trainer.optimizer, "rm_optim_checkpoint_%d.pt" % (torch.cuda.current_device()), only_rank0=False
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--strategy",
choices=["ddp", "colossalai_gemini", "colossalai_zero2", "colossalai_zero2_cpu"],
default="colossalai_zero2",
)
parser.add_argument("--model", choices=["gpt2", "bloom", "opt", "llama", "chatglm"], default="bloom")
parser.add_argument("--tokenizer", type=str, default=None)
parser.add_argument("--pretrain", type=str, default=None)
parser.add_argument("--dataset", type=str, default=None)
parser.add_argument("--max_datasets_size", type=int, default=None)
parser.add_argument("--save_path", type=str, default="output")
parser.add_argument("--need_optim_ckpt", type=bool, default=False)
parser.add_argument("--max_epochs", type=int, default=3)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--max_len", type=int, default=512)
parser.add_argument("--lora_rank", type=int, default=0, help="low-rank adaptation matrices rank")
parser.add_argument("--merge_lora_weights", type=bool, default=True)
parser.add_argument("--lr", type=float, default=5e-6)
parser.add_argument("--accumulation_steps", type=int, default=8)
parser.add_argument("--log_dir", default="logs", type=str)
parser.add_argument("--use_wandb", default=False, action="store_true")
parser.add_argument("--grad_checkpoint", default=False, action="store_true")
args = parser.parse_args()
train(args)