ColossalAI/colossalai/kernel/triton/rms_layernorm.py

117 lines
4.4 KiB
Python

try:
import triton
import triton.language as tl
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
if HAS_TRITON:
# CREDITS: These functions are adapted from the Triton tutorial
# https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
@triton.jit
def _rmsnorm_kernel(
X, # pointer to the input
Y, # pointer to the output
W, # pointer to the weights
stride, # how much to increase the pointer when moving by 1 row
N, # number of columns in X
eps, # epsilon to avoid division by zero
BLOCK_SIZE: tl.constexpr,
):
# This triton kernel implements Root Mean Square Layer Norm (RMSNorm).
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
Y += row * stride
X += row * stride
# Compute variance
_var = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
x = tl.where(cols < N, x, 0.0)
_var += x * x
var = tl.sum(_var, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
# Normalize and apply linear transformation
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
mask = cols < N
w = tl.load(W + cols, mask=mask)
x = tl.load(X + cols, mask=mask, other=0.0).to(tl.float32)
x_hat = x * rstd
y = x_hat * w
# Write output
tl.store(Y + cols, y.to(tl.float16), mask=mask)
@triton.jit
def _rmsnorm_with_residual_kernel(
X, # pointer to the input
Y, # pointer to the output
R, # pointer to the residual
W, # pointer to the weights
stride, # how much to increase the pointer when moving by 1 row
N, # number of columns in X
eps, # epsilon to avoid division by zero
BLOCK_SIZE: tl.constexpr,
):
# This triton kernel implements Root Mean Square Layer Norm (RMSNorm).
# Map the program id to the row of X and Y it should compute.
row = tl.program_id(0)
Y += row * stride
X += row * stride
R += row * stride
# Compute variance
_var = tl.zeros([BLOCK_SIZE], dtype=tl.float32)
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
x = tl.where(cols < N, x, 0.0)
r = tl.load(R + cols, mask=cols < N, other=0.0).to(tl.float32)
r = tl.where(cols < N, r, 0.0)
x = x + r
_var += x * x
mask = cols < N
tl.store(X + cols, x.to(tl.float16), mask=mask)
var = tl.sum(_var, axis=0) / N
rstd = 1 / tl.sqrt(var + eps)
# Normalize and apply linear transformation
for off in range(0, N, BLOCK_SIZE):
cols = off + tl.arange(0, BLOCK_SIZE)
mask = cols < N
w = tl.load(W + cols, mask=mask)
x = tl.load(X + cols, mask=mask, other=0.0).to(tl.float32)
x_hat = x * rstd
y = x_hat * w
# Write output
tl.store(Y + cols, y.to(tl.float16), mask=mask)
def rms_layernorm(x, weight, eps, norm_output=None, residual=None):
# allocate output
y = (
x * 0 if norm_output is None else norm_output
) # to make the operation non-functional, store y as the intermediate activation
M, N = x.shape
# Less than 64KB per feature: enqueue fused kernel
MAX_FUSED_SIZE = 65536 // x.element_size()
BLOCK_SIZE = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
if N > MAX_FUSED_SIZE:
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
# heuristics for number of warps
num_warps = min(max(triton.next_power_of_2(N) // 256, 8), 32)
# enqueue kernel
if residual is None:
_rmsnorm_kernel[(M,)](x, y, weight, x.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps)
else:
_rmsnorm_with_residual_kernel[(M,)](
x, y, residual, weight, x.stride(0), N, eps, BLOCK_SIZE=BLOCK_SIZE, num_warps=num_warps
)
return y, x