mirror of https://github.com/hpcaitech/ColossalAI
473 lines
19 KiB
Python
473 lines
19 KiB
Python
from typing import Any, Dict, List, Tuple
|
|
|
|
import torch
|
|
|
|
try:
|
|
from torch.fx.graph import CodeGen
|
|
except:
|
|
pass
|
|
from torch.fx.graph import (
|
|
PythonCode,
|
|
_custom_builtins,
|
|
_format_target,
|
|
_is_from_torch,
|
|
_Namespace,
|
|
_origin_type_map,
|
|
_register_custom_builtin,
|
|
inplace_methods,
|
|
magic_methods,
|
|
)
|
|
from torch.fx.node import Argument, Node, _get_qualified_name, _type_repr, map_arg
|
|
|
|
import colossalai
|
|
from colossalai.fx._compatibility import compatibility
|
|
|
|
_register_custom_builtin("colossalai", "import colossalai", colossalai)
|
|
|
|
|
|
def _gen_ckpt_fn_def(label, free_vars: List[str]) -> str:
|
|
"""
|
|
Generate the checkpoint function definition
|
|
"""
|
|
return f"def checkpoint_{label}({', '.join(['self'] + free_vars)}):"
|
|
|
|
|
|
def _gen_ckpt_output(output_vars: List[str]) -> str:
|
|
"""
|
|
Generate the return statement for checkpoint region
|
|
"""
|
|
return f"return {', '.join(output_vars)}"
|
|
|
|
|
|
def _gen_ckpt_usage(label, input_vars, output_vars, use_reentrant=True):
|
|
"""
|
|
Generate the checkpoint function call code text
|
|
"""
|
|
outputs = ", ".join(output_vars)
|
|
inputs = ", ".join(input_vars)
|
|
return f"{outputs} = torch.utils.checkpoint.checkpoint(self.checkpoint_{label}, {inputs}, use_reentrant={use_reentrant})"
|
|
|
|
|
|
def _end_of_ckpt(node: Node, ckpt_level: int) -> bool:
|
|
"""
|
|
Check if the node could end the ckpt region at `ckpt_level`
|
|
"""
|
|
if len(node.meta["info"].activation_checkpoint) > ckpt_level:
|
|
return node.meta["info"].activation_checkpoint[ckpt_level] is not None
|
|
return True
|
|
|
|
|
|
def _find_input_and_output_nodes(nodes: List[Node]):
|
|
"""
|
|
Find the input and output node names which are not found in the given list of nodes.
|
|
"""
|
|
input_nodes = []
|
|
output_nodes = []
|
|
|
|
# if a node has an input node which is not in the node list
|
|
# we treat that input node as the input of the checkpoint function
|
|
for node in nodes:
|
|
for input_node in node._input_nodes.keys():
|
|
node_repr = repr(input_node)
|
|
if input_node not in nodes and node_repr not in input_nodes:
|
|
input_nodes.append(node_repr)
|
|
|
|
# if a node has a user node which is not in the node list
|
|
# we treat that user node as the node receiving the current node output
|
|
for node in nodes:
|
|
for output_node in node.users.keys():
|
|
node_repr = repr(node)
|
|
if output_node not in nodes and node_repr not in output_nodes:
|
|
output_nodes.append(node_repr)
|
|
|
|
return input_nodes, output_nodes
|
|
|
|
|
|
def _find_nested_ckpt_regions(node_list: List[Node], ckpt_level: int = 0):
|
|
"""
|
|
Find the nested checkpoint regions given a list of consecutive nodes. The outputs
|
|
will be list of tuples, each tuple is in the form of (start_index, end_index).
|
|
"""
|
|
ckpt_regions = []
|
|
start = -1
|
|
end = -1
|
|
current_region = None
|
|
|
|
for idx, node in enumerate(node_list):
|
|
if len(node.meta["info"].activation_checkpoint) > ckpt_level:
|
|
act_ckpt_label = node.meta["info"].activation_checkpoint[ckpt_level]
|
|
|
|
# this activation checkpoint label is not set yet
|
|
# meaning this is the first node of the activation ckpt region
|
|
if current_region is None:
|
|
current_region = act_ckpt_label
|
|
start = idx
|
|
|
|
# if activation checkpoint has changed
|
|
# we restart the tracking
|
|
# e.g. node ckpt states = [ckpt1, ckpt2, ckpt2, ckpt2]
|
|
if act_ckpt_label != current_region:
|
|
assert start != -1
|
|
ckpt_regions.append((start, idx - 1))
|
|
current_region = act_ckpt_label
|
|
start = idx
|
|
end = -1
|
|
|
|
elif current_region is not None and _end_of_ckpt(node, ckpt_level):
|
|
# used to check the case below
|
|
# node ckpt states = [ckpt, ckpt, non-ckpt]
|
|
end = idx - 1
|
|
assert start != -1 and end != -1
|
|
ckpt_regions.append((start, end))
|
|
start = end = -1
|
|
current_region = None
|
|
|
|
else:
|
|
pass
|
|
|
|
if current_region is not None:
|
|
end = len(node_list) - 1
|
|
ckpt_regions.append((start, end))
|
|
return ckpt_regions
|
|
|
|
|
|
def emit_ckpt_func(
|
|
body, ckpt_func, node_list: List[Node], emit_node_func, delete_unused_value_func, ckpt_level=0, in_ckpt=False
|
|
):
|
|
"""Emit ckpt function in nested way
|
|
|
|
Args:
|
|
body: forward code - in recursive calls, this part will be checkpoint
|
|
functions code
|
|
ckpt_func: checkpoint functions code - in recursive calls, this part
|
|
will be a buffer
|
|
node_list (List[Node]): list of torch.fx.Node
|
|
emit_node_func: function to emit a node
|
|
delete_unused_value_func: function to delete unused value
|
|
level (int, optional): checkpoint level. Defaults to 0.
|
|
in_ckpt (bool, optional): indicates wether the func is in recursive
|
|
call. Defaults to False.
|
|
"""
|
|
inputs, outputs = _find_input_and_output_nodes(node_list)
|
|
|
|
# label given by each layer, e.g. if you are currently at level (0, 1, 1)
|
|
# the label will be '0_1_1'
|
|
label = "_".join([str(idx) for idx in node_list[0].meta["info"].activation_checkpoint[: ckpt_level + 1]])
|
|
ckpt_fn_def = _gen_ckpt_fn_def(label, inputs)
|
|
ckpt_func.append(f"{ckpt_fn_def}\n")
|
|
|
|
# if there is more level to fetch
|
|
if ckpt_level + 1 < max(map(lambda node: len(node.meta["info"].activation_checkpoint), node_list)):
|
|
ckpt_regions = _find_nested_ckpt_regions(node_list, ckpt_level + 1)
|
|
start_idx = [item[0] for item in ckpt_regions]
|
|
end_idx = [item[1] for item in ckpt_regions]
|
|
|
|
# use ckpt_func_buffer to store nested checkpoint functions
|
|
ckpt_func_buffer = []
|
|
node_idx = 0
|
|
while 1:
|
|
if node_idx >= len(node_list):
|
|
break
|
|
|
|
if node_idx in start_idx:
|
|
ckpt_node_list = node_list[node_idx : end_idx[start_idx.index(node_idx)] + 1]
|
|
emit_ckpt_func(
|
|
ckpt_func,
|
|
ckpt_func_buffer,
|
|
ckpt_node_list,
|
|
emit_node_func,
|
|
delete_unused_value_func,
|
|
ckpt_level + 1,
|
|
True,
|
|
)
|
|
node_idx += len(ckpt_node_list)
|
|
|
|
else:
|
|
node = node_list[node_idx]
|
|
emit_node_func(node, ckpt_func)
|
|
ckpt_func[-1] = " " + ckpt_func[-1]
|
|
delete_unused_value_func(node, ckpt_func)
|
|
node_idx += 1
|
|
|
|
ckpt_func.append(" " + _gen_ckpt_output(outputs) + "\n\n")
|
|
ckpt_func += ckpt_func_buffer
|
|
|
|
# last level
|
|
else:
|
|
for node in node_list:
|
|
emit_node_func(node, ckpt_func)
|
|
ckpt_func[-1] = " " + ckpt_func[-1]
|
|
delete_unused_value_func(node, ckpt_func)
|
|
|
|
ckpt_func.append(" " + _gen_ckpt_output(outputs) + "\n\n")
|
|
|
|
usage = _gen_ckpt_usage(label, inputs, outputs, False) + "\n"
|
|
if in_ckpt:
|
|
usage = " " + usage
|
|
body.append(usage)
|
|
|
|
|
|
def emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node_func, delete_unused_value_func):
|
|
"""Emit code with nested activation checkpoint
|
|
When we detect some of the annotation is a , we will use
|
|
this function to emit the activation checkpoint codes.
|
|
|
|
Args:
|
|
body: forward code
|
|
ckpt_func: checkpoint functions code
|
|
nodes: graph.nodes
|
|
emit_node_func: function to emit node
|
|
delete_unused_value_func: function to remove the unused value
|
|
"""
|
|
ckpt_regions = _find_nested_ckpt_regions(nodes, 0)
|
|
start_idx = [item[0] for item in ckpt_regions]
|
|
end_idx = [item[1] for item in ckpt_regions]
|
|
node_list = list(nodes)
|
|
|
|
node_idx = 0
|
|
while 1:
|
|
# break if we finish the processing all the nodes
|
|
if node_idx >= len(node_list):
|
|
break
|
|
|
|
# process ckpt_regions
|
|
if node_idx in start_idx:
|
|
ckpt_node_list = node_list[node_idx : end_idx[start_idx.index(node_idx)] + 1]
|
|
emit_ckpt_func(body, ckpt_func, ckpt_node_list, emit_node_func, delete_unused_value_func)
|
|
node_idx += len(ckpt_node_list)
|
|
|
|
# process node in forward function
|
|
else:
|
|
node = node_list[node_idx]
|
|
emit_node_func(node, body)
|
|
delete_unused_value_func(node, body)
|
|
node_idx += 1
|
|
|
|
|
|
@compatibility(is_backward_compatible=True)
|
|
class ActivationCheckpointCodeGen(CodeGen):
|
|
def _gen_python_code(self, nodes, root_module: str, namespace: _Namespace, verbose=None) -> PythonCode:
|
|
free_vars: List[str] = []
|
|
body: List[str] = []
|
|
globals_: Dict[str, Any] = {}
|
|
wrapped_fns: Dict[str, None] = {}
|
|
|
|
# Wrap string in list to pass by reference
|
|
maybe_return_annotation: List[str] = [""]
|
|
|
|
def add_global(name_hint: str, obj: Any):
|
|
"""Add an obj to be tracked as a global.
|
|
We call this for names that reference objects external to the
|
|
Graph, like functions or types.
|
|
Returns: the global name that should be used to reference 'obj' in generated source.
|
|
"""
|
|
if _is_from_torch(obj) and obj != torch.device: # to support registering torch.device
|
|
# HACK: workaround for how torch custom ops are registered. We
|
|
# can't import them like normal modules so they must retain their
|
|
# fully qualified name.
|
|
return _get_qualified_name(obj)
|
|
|
|
# normalize the name hint to get a proper identifier
|
|
global_name = namespace.create_name(name_hint, obj)
|
|
|
|
if global_name in globals_:
|
|
assert globals_[global_name] is obj
|
|
return global_name
|
|
globals_[global_name] = obj
|
|
return global_name
|
|
|
|
# Pre-fill the globals table with registered builtins.
|
|
for name, (_, obj) in _custom_builtins.items():
|
|
add_global(name, obj)
|
|
|
|
def type_repr(o: Any):
|
|
if o == ():
|
|
# Empty tuple is used for empty tuple type annotation Tuple[()]
|
|
return "()"
|
|
|
|
typename = _type_repr(o)
|
|
|
|
if hasattr(o, "__origin__"):
|
|
# This is a generic type, e.g. typing.List[torch.Tensor]
|
|
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
|
|
origin_typename = add_global(_type_repr(origin_type), origin_type)
|
|
|
|
if hasattr(o, "__args__"):
|
|
# Assign global names for each of the inner type variables.
|
|
args = [type_repr(arg) for arg in o.__args__]
|
|
|
|
if len(args) == 0:
|
|
# Bare type, such as `typing.Tuple` with no subscript
|
|
# This code-path used in Python < 3.9
|
|
return origin_typename
|
|
|
|
return f'{origin_typename}[{",".join(args)}]'
|
|
else:
|
|
# Bare type, such as `typing.Tuple` with no subscript
|
|
# This code-path used in Python 3.9+
|
|
return origin_typename
|
|
|
|
# Common case: this is a regular module name like 'foo.bar.baz'
|
|
return add_global(typename, o)
|
|
|
|
def _format_args(args: Tuple[Argument, ...], kwargs: Dict[str, Argument]) -> str:
|
|
def _get_repr(arg):
|
|
# Handle NamedTuples (if it has `_fields`) via add_global.
|
|
if isinstance(arg, tuple) and hasattr(arg, "_fields"):
|
|
qualified_name = _get_qualified_name(type(arg))
|
|
global_name = add_global(qualified_name, type(arg))
|
|
return f"{global_name}{repr(tuple(arg))}"
|
|
return repr(arg)
|
|
|
|
args_s = ", ".join(_get_repr(a) for a in args)
|
|
kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items())
|
|
if args_s and kwargs_s:
|
|
return f"{args_s}, {kwargs_s}"
|
|
return args_s or kwargs_s
|
|
|
|
# Run through reverse nodes and record the first instance of a use
|
|
# of a given node. This represents the *last* use of the node in the
|
|
# execution order of the program, which we will use to free unused
|
|
# values
|
|
node_to_last_use: Dict[Node, Node] = {}
|
|
user_to_last_uses: Dict[Node, List[Node]] = {}
|
|
|
|
def register_last_uses(n: Node, user: Node):
|
|
if n not in node_to_last_use:
|
|
node_to_last_use[n] = user
|
|
user_to_last_uses.setdefault(user, []).append(n)
|
|
|
|
for node in reversed(nodes):
|
|
map_arg(node.args, lambda n: register_last_uses(n, node))
|
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func
|
|
def delete_unused_values(user: Node, body):
|
|
"""
|
|
Delete values after their last use. This ensures that values that are
|
|
not used in the remainder of the code are freed and the memory usage
|
|
of the code is optimal.
|
|
"""
|
|
if user.op == "placeholder":
|
|
return
|
|
if user.op == "output":
|
|
body.append("\n")
|
|
return
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
if len(nodes_to_delete):
|
|
to_delete_str = " = ".join([repr(n) for n in nodes_to_delete] + ["None"])
|
|
body.append(f"; {to_delete_str}\n")
|
|
else:
|
|
body.append("\n")
|
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func
|
|
def emit_node(node: Node, body):
|
|
maybe_type_annotation = "" if node.type is None else f" : {type_repr(node.type)}"
|
|
if node.op == "placeholder":
|
|
assert isinstance(node.target, str)
|
|
maybe_default_arg = "" if not node.args else f" = {repr(node.args[0])}"
|
|
free_vars.append(f"{node.target}{maybe_type_annotation}{maybe_default_arg}")
|
|
raw_name = node.target.replace("*", "")
|
|
if raw_name != repr(node):
|
|
body.append(f"{repr(node)} = {raw_name}\n")
|
|
return
|
|
elif node.op == "call_method":
|
|
assert isinstance(node.target, str)
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}"
|
|
f"({_format_args(node.args[1:], node.kwargs)})"
|
|
)
|
|
return
|
|
elif node.op == "call_function":
|
|
assert callable(node.target)
|
|
# pretty print operators
|
|
if node.target.__module__ == "_operator" and node.target.__name__ in magic_methods:
|
|
assert isinstance(node.args, tuple)
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = "
|
|
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}"
|
|
)
|
|
return
|
|
|
|
# pretty print inplace operators; required for jit.script to work properly
|
|
# not currently supported in normal FX graphs, but generated by torchdynamo
|
|
if node.target.__module__ == "_operator" and node.target.__name__ in inplace_methods:
|
|
body.append(
|
|
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; "
|
|
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}"
|
|
)
|
|
return
|
|
|
|
qualified_name = _get_qualified_name(node.target)
|
|
global_name = add_global(qualified_name, node.target)
|
|
# special case for getattr: node.args could be 2-argument or 3-argument
|
|
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
|
|
if (
|
|
global_name == "getattr"
|
|
and isinstance(node.args, tuple)
|
|
and isinstance(node.args[1], str)
|
|
and node.args[1].isidentifier()
|
|
and len(node.args) == 2
|
|
):
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}"
|
|
)
|
|
return
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})"
|
|
)
|
|
if node.meta.get("is_wrapped", False):
|
|
wrapped_fns.setdefault(global_name)
|
|
return
|
|
elif node.op == "call_module":
|
|
assert isinstance(node.target, str)
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = "
|
|
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})"
|
|
)
|
|
return
|
|
elif node.op == "get_attr":
|
|
assert isinstance(node.target, str)
|
|
body.append(f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}")
|
|
return
|
|
elif node.op == "output":
|
|
if node.type is not None:
|
|
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
|
|
body.append(self.generate_output(node.args[0]))
|
|
return
|
|
raise NotImplementedError(f"node: {node.op} {node.target}")
|
|
|
|
# Modified for activation checkpointing
|
|
ckpt_func = []
|
|
emit_code_with_activation_checkpoint(body, ckpt_func, nodes, emit_node, delete_unused_values)
|
|
|
|
if len(body) == 0:
|
|
# If the Graph has no non-placeholder nodes, no lines for the body
|
|
# have been emitted. To continue to have valid Python code, emit a
|
|
# single pass statement
|
|
body.append("pass\n")
|
|
|
|
if len(wrapped_fns) > 0:
|
|
wrap_name = add_global("wrap", torch.fx.wrap)
|
|
wrap_stmts = "\n".join([f'{wrap_name}("{name}")' for name in wrapped_fns])
|
|
else:
|
|
wrap_stmts = ""
|
|
|
|
if self._body_transformer:
|
|
body = self._body_transformer(body)
|
|
|
|
for name, value in self.additional_globals():
|
|
add_global(name, value)
|
|
|
|
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
|
|
prologue = "".join(ckpt_func) + prologue
|
|
prologue = prologue
|
|
|
|
code = "".join(body)
|
|
code = "\n".join(" " + line for line in code.split("\n"))
|
|
fn_code = f"""
|
|
{wrap_stmts}
|
|
{prologue}
|
|
{code}"""
|
|
return PythonCode(fn_code, globals_, {})
|