mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
8.5 KiB
192 lines
8.5 KiB
from typing import Callable, Dict, List, Tuple
|
|
|
|
import ray
|
|
import torch
|
|
from coati.experience_maker import Experience
|
|
from coati.models.base import Actor, Critic
|
|
from coati.models.loss import PolicyLoss, ValueLoss
|
|
from coati.trainer.strategies import GeminiStrategy, LowLevelZeroStrategy, Strategy
|
|
from torch.optim import Adam
|
|
|
|
from colossalai.nn.optimizer import HybridAdam
|
|
|
|
from .callbacks import TrainerCallback, TrainerPerformanceEvaluator
|
|
from .detached_trainer_base import DetachedTrainer
|
|
from .lora_constructor import LoRAConstructor
|
|
from .utils import get_model_numel, get_rank, set_dist_env, state_dict_to
|
|
|
|
|
|
@ray.remote(
|
|
concurrency_groups={"buffer_length": 1, "buffer_append": 1, "buffer_sample": 1, "model_io": 1, "compute": 1}
|
|
)
|
|
class DetachedPPOTrainer(DetachedTrainer):
|
|
"""
|
|
Detached Trainer for PPO algorithm
|
|
Args:
|
|
strategy (Strategy): the strategy to use for training
|
|
model (str) : for actor / critic init
|
|
pretrained (str) : for actor / critic init
|
|
lora_rank (int) : for actor / critic init
|
|
train_batch_size (int, defaults to 8): the batch size to use for training
|
|
train_batch_size (int, defaults to 8): the batch size to use for training
|
|
buffer_limit (int, defaults to 0): the max_size limitation of replay buffer
|
|
buffer_cpu_offload (bool, defaults to True): whether to offload replay buffer to cpu
|
|
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
|
|
value_clip (float, defaults to 0.4): the clip coefficient of value loss
|
|
experience_batch_size (int, defaults to 8): the batch size to use for experience generation
|
|
max_epochs (int, defaults to 1): the number of epochs of training process
|
|
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
|
|
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
|
generate_kwargs (dict, optional): the kwargs to use while model generating
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
experience_maker_holder_name_list: List[str],
|
|
strategy_fn: Callable[[], Strategy],
|
|
model_fn: Callable[[], Tuple[Actor, Critic]],
|
|
env_info: Dict[str, str] = None,
|
|
train_batch_size: int = 8,
|
|
buffer_limit: int = 0,
|
|
eps_clip: float = 0.2,
|
|
value_clip: float = 0.4,
|
|
dataloader_pin_memory: bool = True,
|
|
callbacks: List[TrainerCallback] = [],
|
|
eval_performance: bool = False,
|
|
debug: bool = False,
|
|
update_lora_weights: bool = False,
|
|
) -> None:
|
|
# set environment variables
|
|
if env_info:
|
|
set_dist_env(env_info=env_info)
|
|
# configure strategy
|
|
self.strategy = strategy_fn()
|
|
# configure models, loss and optimizers
|
|
with self.strategy.model_init_context():
|
|
self.actor, self.critic = model_fn()
|
|
|
|
if eval_performance:
|
|
actor_numel = get_model_numel(self.actor)
|
|
critic_numel = get_model_numel(self.critic)
|
|
evaluator = TrainerPerformanceEvaluator(actor_numel, critic_numel)
|
|
callbacks = callbacks + [evaluator]
|
|
|
|
if isinstance(self.strategy, (LowLevelZeroStrategy, GeminiStrategy)):
|
|
self.actor_optim = HybridAdam(self.actor.parameters(), lr=1e-7)
|
|
self.critic_optim = HybridAdam(self.critic.parameters(), lr=1e-7)
|
|
else:
|
|
self.actor_optim = Adam(self.actor.parameters(), lr=1e-7)
|
|
self.critic_optim = Adam(self.critic.parameters(), lr=1e-7)
|
|
|
|
(self.actor, self.actor_optim), (self.critic, self.critic_optim) = self.strategy.prepare(
|
|
(self.actor, self.actor_optim), (self.critic, self.critic_optim)
|
|
)
|
|
|
|
# configure trainer
|
|
self.actor_loss_fn = PolicyLoss(eps_clip)
|
|
self.critic_loss_fn = ValueLoss(value_clip)
|
|
|
|
super().__init__(
|
|
experience_maker_holder_name_list,
|
|
train_batch_size=train_batch_size,
|
|
buffer_limit=buffer_limit,
|
|
dataloader_pin_memory=dataloader_pin_memory,
|
|
callbacks=callbacks,
|
|
debug=debug,
|
|
)
|
|
if self._debug:
|
|
print(f"[trainer{get_rank()}] will send state dict to {experience_maker_holder_name_list}")
|
|
|
|
self._update_lora_weights = update_lora_weights
|
|
|
|
@ray.method(concurrency_group="model_io")
|
|
@torch.no_grad()
|
|
def _update_remote_makers(self, fully_update: bool = False, **config):
|
|
# TODO: balance duties
|
|
if not fully_update:
|
|
config["requires_grad_only"] = True
|
|
self.update_target_holder_list()
|
|
# mark start, ensure order
|
|
tasks = []
|
|
for target_holder in self.target_holder_list:
|
|
tasks.append(target_holder.update_experience_maker.remote(chunk_start=True, fully_update=fully_update))
|
|
ray.get(tasks)
|
|
# sending loop
|
|
tasks = []
|
|
|
|
for state_dict_shard in self._get_model_state_dict_shard(self.actor, fully_update=fully_update, **config):
|
|
for target_holder in self.target_holder_list:
|
|
tasks.append(
|
|
target_holder.update_experience_maker.remote(
|
|
new_actor_state_dict=state_dict_shard,
|
|
new_actor_lora_config_dict=self._get_model_lora_config_dict(self.actor),
|
|
fully_update=fully_update,
|
|
)
|
|
)
|
|
# sending loop
|
|
for state_dict_shard in self._get_model_state_dict_shard(self.critic, fully_update=fully_update, **config):
|
|
for target_holder in self.target_holder_list:
|
|
tasks.append(
|
|
target_holder.update_experience_maker.remote(
|
|
new_critic_state_dict=state_dict_shard,
|
|
new_critic_lora_config_dict=self._get_model_lora_config_dict(self.critic),
|
|
fully_update=fully_update,
|
|
)
|
|
)
|
|
ray.get(tasks)
|
|
# mark end
|
|
for target_holder in self.target_holder_list:
|
|
target_holder.update_experience_maker.remote(chunk_end=True, fully_update=fully_update)
|
|
|
|
@ray.method(concurrency_group="compute")
|
|
def training_step(self, experience: Experience) -> Dict[str, float]:
|
|
self.actor.train()
|
|
self.critic.train()
|
|
|
|
num_actions = experience.action_mask.size(1)
|
|
action_log_probs = self.actor(experience.sequences, num_actions, attention_mask=experience.attention_mask)
|
|
actor_loss = self.actor_loss_fn(
|
|
action_log_probs, experience.action_log_probs, experience.advantages, action_mask=experience.action_mask
|
|
)
|
|
self.strategy.backward(actor_loss, self.actor, self.actor_optim)
|
|
self.strategy.optimizer_step(self.actor_optim)
|
|
self.actor_optim.zero_grad()
|
|
|
|
values = self.critic(
|
|
experience.sequences, action_mask=experience.action_mask, attention_mask=experience.attention_mask
|
|
)
|
|
critic_loss = self.critic_loss_fn(
|
|
values, experience.values, experience.reward, action_mask=experience.action_mask
|
|
)
|
|
|
|
self.strategy.backward(critic_loss, self.critic, self.critic_optim)
|
|
self.strategy.optimizer_step(self.critic_optim)
|
|
self.critic_optim.zero_grad()
|
|
return {"actor_loss": actor_loss.item(), "critic_loss": critic_loss.item()}
|
|
|
|
def strategy_save_actor(self, path: str, only_rank0: bool = False) -> None:
|
|
self.strategy.save_model(self.actor, path, only_rank0)
|
|
|
|
def strategy_save_critic(self, path: str, only_rank0: bool = False) -> None:
|
|
self.strategy.save_model(self.critic, path, only_rank0)
|
|
|
|
def strategy_save_actor_optim(self, path: str, only_rank0: bool = False) -> None:
|
|
self.strategy.save_optimizer(self.actor_optim, path, only_rank0)
|
|
|
|
def strategy_save_critic_optim(self, path: str, only_rank0: bool = False) -> None:
|
|
self.strategy.save_optimizer(self.critic_optim, path, only_rank0)
|
|
|
|
def _get_model_state_dict_shard(self, model: torch.nn.Module, fully_update=False, **config):
|
|
for state_dict in self.strategy.get_model_state_dict_shard(model, **config):
|
|
if not self._update_lora_weights or fully_update:
|
|
yield state_dict_to(state_dict)
|
|
else:
|
|
state_dict_lora, _ = LoRAConstructor.filter_state_dict_lora(state_dict)
|
|
yield state_dict_to(state_dict_lora)
|
|
|
|
def _get_model_lora_config_dict(self, model: torch.nn.Module):
|
|
if not self._update_lora_weights:
|
|
return None
|
|
unwrapped_model = self.strategy.unwrap_model(model)
|
|
return LoRAConstructor.extract_lora_config(unwrapped_model)
|