mirror of https://github.com/hpcaitech/ColossalAI
57 lines
1.9 KiB
Python
57 lines
1.9 KiB
Python
from copy import deepcopy
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from colossalai.gemini.memory_tracer.model_data_memtracer import GLOBAL_CUDA_MEM_INFO
|
|
from colossalai.gemini.memory_tracer.runtime_mem_tracer import RuntimeMemTracer
|
|
from colossalai.utils.model.colo_init_context import ColoInitContext
|
|
from tests.components_to_test import run_fwd_bwd
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
|
|
|
|
def run_fwd_bwd(model, data, label, criterion, enable_autocast=False, dtype=torch.half):
|
|
with torch.cuda.amp.autocast(enabled=enable_autocast):
|
|
if criterion:
|
|
y = model(data)
|
|
loss = criterion(y, label)
|
|
else:
|
|
loss = model(data, label)
|
|
loss = loss.to(dtype)
|
|
model.backward(loss)
|
|
|
|
|
|
def test_runtime_mem_tracer():
|
|
test_models = ['gpt2', 'bert', 'simple_net', 'repeated_computed_layers', 'nested_model']
|
|
|
|
for model_name in test_models:
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
|
|
|
with ColoInitContext(device=torch.device('cpu')):
|
|
model = model_builder(checkpoint=True)
|
|
|
|
model_bk = deepcopy(model)
|
|
runtime_mem_tracer = RuntimeMemTracer(model)
|
|
|
|
for i, (data, label) in enumerate(train_dataloader):
|
|
if i > 1:
|
|
break
|
|
data = data.cuda()
|
|
label = label.cuda()
|
|
|
|
run_fwd_bwd(runtime_mem_tracer, data, label, criterion, False)
|
|
|
|
for p1, p2 in zip(model_bk.parameters(), model.parameters()):
|
|
torch.allclose(p1.to(torch.half), p2)
|
|
|
|
cuda_non_model_data_list = np.array(GLOBAL_CUDA_MEM_INFO.non_model_data_list) / 1024**2
|
|
print("cuda_non_model_data_list", len(cuda_non_model_data_list))
|
|
# print(GLOBAL_CUDA_MEM_INFO.non_model_data_list)
|
|
|
|
del model
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_runtime_mem_tracer()
|