You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/layer/parallel_2d/_operation.py

850 lines
34 KiB

from typing import Any, Optional, Tuple
import torch
import torch.distributed as dist
from colossalai.communication.collective import (all_gather, all_reduce, reduce, reduce_scatter)
from colossalai.context.parallel_mode import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.utils import get_current_device
from torch import Tensor
from torch.cuda.amp import custom_bwd, custom_fwd
from colossalai.global_variables import tensor_parallel_env as env
def matmul_2d(
a,
b,
summa_dim,
out_shape,
row_rank=None,
col_rank=None,
row_parallel_mode=ParallelMode.PARALLEL_2D_ROW,
col_parallel_mode=ParallelMode.PARALLEL_2D_COL,
):
r"""Matrix multiplication for 2D parallelism.
Args:
a (:class:`torch.tensor`): matrix :math:`A`.
b (:class:`torch.tensor`): matrix :math:`B`.
summa_dim (int): dimension of SUMMA fo 2D parallelism.
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`, optional):
row parallel mode, defaults to ParallelMode.PARALLEL_2D_ROW.
col_parallel_mode (:class:`colossalai.context.ParallelMode`, optional):
column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL.
Returns:
:class:`torch.tensor`: :math:`C = AB`.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
if row_rank is None:
row_rank = gpc.get_local_rank(col_parallel_mode)
if col_rank is None:
col_rank = gpc.get_local_rank(row_parallel_mode)
data_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.DATA) else gpc.get_local_rank(ParallelMode.DATA)
pipeline_parallel_rank = 0 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_local_rank(
ParallelMode.PIPELINE)
pipeline_parallel_size = 1 if not gpc.is_initialized(ParallelMode.PIPELINE) else gpc.get_world_size(
ParallelMode.PIPELINE)
tensor_parallel_size = summa_dim**2
return Matmul_AB_2D(a, b, summa_dim, out_shape, row_rank, col_rank, row_parallel_mode, col_parallel_mode,
data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size, tensor_parallel_size)
class _Classifier2D(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(
ctx: Any,
A: Tensor,
B: Tensor,
bias: Optional[Tensor],
summa_dim: int,
out_shape: Tuple[int, ...],
row_rank: int,
col_rank: int,
row_parallel_mode: ParallelMode,
col_parallel_mode: ParallelMode,
data_parallel_rank: int,
pipeline_parallel_rank: int,
pipeline_parallel_size: int,
tensor_parallel_size: int,
) -> Tensor:
A = A.clone().detach()
A_shape = A.shape
A = A.reshape((-1, A_shape[-1]))
B_shape = B.shape
B = B.reshape((-1, B_shape[-1]))
B_temp = all_gather(B, -1, col_parallel_mode)
if ctx:
ctx.save_for_backward(A, B_temp)
C = torch.matmul(A, B_temp.transpose(0, 1))
C = all_reduce(C, row_parallel_mode)
ctx.use_bias = bias is not None
if bias is not None:
C = C + bias
out = C.reshape(out_shape)
if ctx:
ctx.summa_dim = summa_dim
ctx.row_rank = row_rank
ctx.col_rank = col_rank
ctx.row_parallel_mode = row_parallel_mode
ctx.col_parallel_mode = col_parallel_mode
ctx.A_shape = A_shape
ctx.B_shape = B_shape
ctx.data_parallel_rank = data_parallel_rank
ctx.pipeline_parallel_rank = pipeline_parallel_rank
ctx.pipeline_parallel_size = pipeline_parallel_size
ctx.tensor_parallel_size = tensor_parallel_size
return out
@staticmethod
@custom_bwd
def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]:
A, B = ctx.saved_tensors
with torch.no_grad():
A_grad = torch.matmul(output_grad, B)
A_grad = A_grad.reshape(ctx.A_shape)
B_grad = torch.matmul(output_grad.reshape(-1, output_grad.shape[-1]).transpose(0, 1), A)
B_grad = reduce_scatter(B_grad, -1, ctx.col_parallel_mode)
B_grad = B_grad.reshape(ctx.B_shape)
if ctx.use_bias:
bias_grad = torch.sum(output_grad, dim=tuple(range(output_grad.ndim - 1)))
bias_grad = all_reduce(bias_grad, ctx.col_parallel_mode)
else:
bias_grad = None
return A_grad, B_grad, bias_grad, None, None, None, None, None, None, None, None, None, None
def classifier_2d(A: Tensor, B: Tensor, bias: Optional[Tensor], summa_dim: int, out_shape: Tuple[int, ...],
row_rank: int, col_rank: int, row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode,
data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int,
tensor_parallel_size: int) -> Tensor:
r"""2D parallel classifier.
Args:
A (:class:`torch.tensor`): matrix :math:`A`.
B (:class:`torch.tensor`): matrix :math:`B`.
bias (:class:`torch.tensor`, optional): matrix of bias.
summa_dim (int): dimension of SUMMA fo 2D parallelism.
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
tensor_parallel_size (int): tensor parallel size.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
return _Classifier2D.apply(A, B, bias, summa_dim, out_shape, row_rank, col_rank, row_parallel_mode,
col_parallel_mode, data_parallel_rank, pipeline_parallel_rank, pipeline_parallel_size,
tensor_parallel_size)
class Matmul_AB_2D(torch.autograd.Function):
r"""Matrix multiplication for :math:`C = AB`.
Args:
A (:class:`torch.tensor`): matrix :math:`A`.
B (:class:`torch.tensor`): matrix :math:`B`.
summa_dim (int): dimension of SUMMA fo 2D parallelism.
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
tensor_parallel_size (int): tensor parallel size.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(
ctx: Any,
A: Tensor,
B: Tensor,
summa_dim: int,
out_shape: Tuple[int, ...],
row_rank: int,
col_rank: int,
row_parallel_mode: ParallelMode,
col_parallel_mode: ParallelMode,
data_parallel_rank: int,
pipeline_parallel_rank: int,
pipeline_parallel_size: int,
tensor_parallel_size: int,
) -> Tensor:
# A: [b / q, s, h / q] -> [(b * s) / q, h / q]
# B: [h / q, s / q]
# C: [b / q, s, s / q] -> [(b * s) / q, s / q]
assert A.shape[-1] == B.shape[-2], \
'Invalid shapes: A={}, B={} for AB.'.format(A.shape, B.shape)
if ctx:
ctx.save_for_backward(A, B)
A_shape = A.shape
A = A.reshape((-1, A_shape[-1]))
B_shape = B.shape
B = B.reshape((-1, B_shape[-1]))
C_shape = (A.shape[0], B.shape[-1])
C = torch.zeros(C_shape, dtype=A.dtype, device=get_current_device())
# use circular buffer to store the communication tensor
# 2 is enough for all cases
A_list = [torch.empty_like(A) for _ in range(2)]
B_list = [torch.empty_like(B) for _ in range(2)]
row_group = gpc.get_group(row_parallel_mode)
col_group = gpc.get_group(col_parallel_mode)
src_a = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
src_b = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
opa = [None] * 2
opb = [None] * 2
A_list[0].copy_(A)
B_list[0].copy_(B)
opa[0] = dist.broadcast(A_list[0], src=src_a, group=row_group, async_op=True)
opb[0] = dist.broadcast(B_list[0], src=src_b, group=col_group, async_op=True)
cur = 0
for i in range(summa_dim):
if i != summa_dim - 1:
A_list[1 - cur].copy_(A)
opa[1 - cur] = dist.broadcast(A_list[1 - cur], src=src_a + 1, group=row_group, async_op=True)
B_list[1 - cur].copy_(B)
opb[1 - cur] = dist.broadcast(B_list[1 - cur], src=src_b + summa_dim, group=col_group, async_op=True)
if opa[cur] is not None:
opa[cur].wait()
if opb[cur] is not None:
opb[cur].wait()
torch.addmm(C, A_list[cur], B_list[cur], out=C)
cur = 1 - cur
src_a += 1
src_b += summa_dim
out = C.reshape(out_shape)
if ctx:
ctx.summa_dim = summa_dim
ctx.row_rank = row_rank
ctx.col_rank = col_rank
ctx.row_parallel_mode = row_parallel_mode
ctx.col_parallel_mode = col_parallel_mode
ctx.A_shape = A_shape
ctx.B_shape = B_shape
ctx.data_parallel_rank = data_parallel_rank
ctx.pipeline_parallel_rank = pipeline_parallel_rank
ctx.pipeline_parallel_size = pipeline_parallel_size
ctx.tensor_parallel_size = tensor_parallel_size
return out
@staticmethod
@custom_bwd
def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]:
A, B = ctx.saved_tensors
with torch.no_grad():
A_grad = Matmul_ABT_2D.apply(output_grad, B, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank,
ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank,
ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size,
ctx.tensor_parallel_size)
B_grad = Matmul_ATB_2D.apply(A, output_grad, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank,
ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank,
ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size,
ctx.tensor_parallel_size)
return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None
class Matmul_ABT_2D(torch.autograd.Function):
r"""Matrix multiplication for :math:`C = AB^T`
Args:
A (:class:`torch.tensor`): matrix :math:`A`.
B (:class:`torch.tensor`): matrix :math:`B`.
summa_dim (int): dimension of SUMMA fo 2D parallelism.
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
column parallel mode, defaults to ParallelMode.PARALLEL_2D_COL.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
tensor_parallel_size (int): tensor parallel size.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(
ctx: Any,
A: Tensor,
B: Tensor,
summa_dim: int,
out_shape: Tuple[int, ...],
row_rank: int,
col_rank: int,
row_parallel_mode: ParallelMode,
col_parallel_mode: ParallelMode,
data_parallel_rank: int,
pipeline_parallel_rank: int,
pipeline_parallel_size: int,
tensor_parallel_size: int,
) -> Tensor:
assert A.shape[-1] == B.shape[-1], \
'Invalid shapes: A={}, B={} for ABT.'.format(A.shape, B.shape)
if ctx:
ctx.save_for_backward(A, B)
A_shape = A.shape
A = A.reshape((-1, A_shape[-1]))
B_shape = B.shape
B = B.reshape((-1, B_shape[-1]))
C_shape = (A.shape[0], B.shape[0])
C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device())
# use circular buffer to store the communication tensor
# 2 is enough for all cases
B_list = [torch.empty_like(B) for _ in range(2)]
C_list = [torch.empty_like(C) for _ in range(2)]
row_group = gpc.get_group(row_parallel_mode)
col_group = gpc.get_group(col_parallel_mode)
src_b = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
src_c = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
opb = [None] * 2
opr = [None] * 2
B_list[0].copy_(B)
opb[0] = dist.broadcast(B_list[0], src=src_b, group=col_group, async_op=True)
cur = 0
for i in range(summa_dim):
if i != summa_dim - 1:
B_list[1 - cur].copy_(B)
opb[1 - cur] = dist.broadcast(B_list[1 - cur], src=src_b + summa_dim, group=col_group, async_op=True)
if opr[cur] is not None:
opr[cur].wait()
if i - 2 == col_rank:
C.copy_(C_list[cur])
if opb[cur] is not None:
opb[cur].wait()
torch.matmul(A, B_list[cur].transpose(0, 1), out=C_list[cur])
opr[cur] = dist.reduce(C_list[cur], dst=src_c, group=row_group, async_op=True)
cur = 1 - cur
src_b += summa_dim
src_c += 1
for op in opr:
op.wait()
if summa_dim - 2 == col_rank:
C.copy_(C_list[cur])
if summa_dim - 1 == col_rank:
C.copy_(C_list[1 - cur])
out = C.reshape(out_shape)
if ctx:
ctx.summa_dim = summa_dim
ctx.row_rank = row_rank
ctx.col_rank = col_rank
ctx.row_parallel_mode = row_parallel_mode
ctx.col_parallel_mode = col_parallel_mode
ctx.A_shape = A_shape
ctx.B_shape = B_shape
ctx.data_parallel_rank = data_parallel_rank
ctx.pipeline_parallel_rank = pipeline_parallel_rank
ctx.pipeline_parallel_size = pipeline_parallel_size
ctx.tensor_parallel_size = tensor_parallel_size
return out
@staticmethod
@custom_bwd
def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]:
A, B = ctx.saved_tensors
with torch.no_grad():
A_grad = Matmul_AB_2D.apply(output_grad, B, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank,
ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank,
ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size,
ctx.tensor_parallel_size)
B_grad = Matmul_ATB_2D.apply(output_grad, A, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank,
ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank,
ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size,
ctx.tensor_parallel_size)
return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None
class Matmul_ATB_2D(torch.autograd.Function):
r"""Matrix multiplication for :math:`C = A^TB`.
Args:
A (:class:`torch.tensor`): matrix :math:`A`.
B (:class:`torch.tensor`): matrix :math:`B`.
summa_dim (int): dimension of SUMMA fo 2D parallelism.
out_shape (:class:`torch.size`): shape of output tensor.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
tensor_parallel_size (int): tensor parallel size.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_.
"""
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(
ctx: Any,
A: Tensor,
B: Tensor,
summa_dim: int,
out_shape: Tuple[int, ...],
row_rank: int,
col_rank: int,
row_parallel_mode: ParallelMode,
col_parallel_mode: ParallelMode,
data_parallel_rank: int,
pipeline_parallel_rank: int,
pipeline_parallel_size: int,
tensor_parallel_size: int,
) -> Tensor:
assert A.shape[-2] == B.shape[-2], \
'Invalid shapes: A={}, B={} for ATB.'.format(A.shape, B.shape)
if ctx:
ctx.save_for_backward(A, B)
A_shape = A.shape
A = A.reshape((-1, A_shape[-1]))
B_shape = B.shape
B = B.reshape((-1, B_shape[-1]))
C_shape = (A.shape[-1], B.shape[-1])
C = torch.empty(C_shape, dtype=A.dtype, device=get_current_device())
# use circular buffer to store the communication tensor
# 2 is enough for all cases
A_list = [torch.empty_like(A) for _ in range(2)]
C_list = [torch.empty_like(C) for _ in range(2)]
row_group = gpc.get_group(row_parallel_mode)
col_group = gpc.get_group(col_parallel_mode)
src_a = summa_dim * row_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
src_c = col_rank + data_parallel_rank * pipeline_parallel_size * tensor_parallel_size + \
pipeline_parallel_rank * tensor_parallel_size
opa = [None] * 2
opr = [None] * 2
A_list[0].copy_(A)
opa[0] = dist.broadcast(A_list[0], src=src_a, group=row_group, async_op=True)
cur = 0
for i in range(summa_dim):
if i != summa_dim - 1:
A_list[1 - cur].copy_(A)
opa[1 - cur] = dist.broadcast(A_list[1 - cur], src=src_a + 1, group=row_group, async_op=True)
if opr[cur] is not None:
opr[cur].wait()
if i - 2 == row_rank:
C.copy_(C_list[cur])
if opa[cur] is not None:
opa[cur].wait()
torch.matmul(A_list[cur].transpose(0, 1), B, out=C_list[cur])
opr[cur] = dist.reduce(C_list[cur], dst=src_c, group=col_group, async_op=True)
cur = 1 - cur
src_a += 1
src_c += summa_dim
for op in opr:
op.wait()
if summa_dim - 2 == row_rank:
C.copy_(C_list[cur])
if summa_dim - 1 == row_rank:
C.copy_(C_list[1 - cur])
out = C.reshape(out_shape)
if ctx:
ctx.summa_dim = summa_dim
ctx.row_rank = row_rank
ctx.col_rank = col_rank
ctx.row_parallel_mode = row_parallel_mode
ctx.col_parallel_mode = col_parallel_mode
ctx.A_shape = A_shape
ctx.B_shape = B_shape
ctx.data_parallel_rank = data_parallel_rank
ctx.pipeline_parallel_rank = pipeline_parallel_rank
ctx.pipeline_parallel_size = pipeline_parallel_size
ctx.tensor_parallel_size = tensor_parallel_size
return out
@staticmethod
@custom_bwd
def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]:
A, B = ctx.saved_tensors
with torch.no_grad():
A_grad = Matmul_ABT_2D.apply(B, output_grad, ctx.summa_dim, ctx.A_shape, ctx.row_rank, ctx.col_rank,
ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank,
ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size,
ctx.tensor_parallel_size)
B_grad = Matmul_AB_2D.apply(A, output_grad, ctx.summa_dim, ctx.B_shape, ctx.row_rank, ctx.col_rank,
ctx.row_parallel_mode, ctx.col_parallel_mode, ctx.data_parallel_rank,
ctx.pipeline_parallel_rank, ctx.pipeline_parallel_size,
ctx.tensor_parallel_size)
return A_grad, B_grad, None, None, None, None, None, None, None, None, None, None
class _Add_Bias_2D(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(
ctx: Any,
input_: Tensor,
bias: Tensor,
output_size_per_partition: int,
row_rank: int,
col_rank: int,
row_parallel_mode: ParallelMode,
col_parallel_mode: ParallelMode,
skip_bias_add: bool,
data_parallel_rank: int,
pipeline_parallel_rank: int,
pipeline_parallel_size: int,
tensor_parallel_size: int,
) -> Tensor:
bias_temp = all_gather(bias, -1, col_parallel_mode)
ctx.row_rank = row_rank
ctx.col_rank = col_rank
ctx.row_parallel_mode = row_parallel_mode
ctx.col_parallel_mode = col_parallel_mode
ctx.bias = skip_bias_add
ctx.data_parallel_rank = data_parallel_rank
ctx.pipeline_parallel_rank = pipeline_parallel_rank
ctx.pipeline_parallel_size = pipeline_parallel_size
ctx.tensor_parallel_size = tensor_parallel_size
if skip_bias_add:
return bias_temp
else:
output = input_ + bias_temp
return output
@staticmethod
@custom_bwd
def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]:
col_parallel_mode = ctx.col_parallel_mode
if ctx.bias:
grad = reduce_scatter(output_grad, -1, col_parallel_mode)
return None, grad, None, None, None, None, None, None, None, None, None, None
else:
reduce_dim = tuple(range(output_grad.ndim - 1))
reduce = torch.sum(output_grad, dim=reduce_dim)
grad = reduce_scatter(reduce, -1, col_parallel_mode)
return output_grad, grad, None, None, None, None, None, None, None, None, None, None
def add_bias_2d(input_: Tensor, bias: Tensor, output_size_per_partition: int, row_rank: int, col_rank: int,
row_parallel_mode: ParallelMode, col_parallel_mode: ParallelMode, skip_bias_add: bool,
data_parallel_rank: int, pipeline_parallel_rank: int, pipeline_parallel_size: int,
tensor_parallel_size: int) -> Tensor:
r"""Matrix add bias: :math:`C = A + b`.
Args:
input_ (:class:`torch.tensor`): matrix :math:`A`.
bias (:class:`torch.tensor`): matrix :math:`B`.
output_size_per_partition (int): size of output per partition.
row_rank (int, optional): the rank of row, defaults to None.
col_rank (int, optional): the rank of column, defaults to None.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
skip_bias_add (bool):
If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion.
data_parallel_rank (int): data parallel rank.
pipeline_parallel_rank (int): pipeline parallel rank
pipeline_parallel_size (int): pipeline parallel size.
tensor_parallel_size (int): tensor parallel size.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
return _Add_Bias_2D.apply(input_, bias, output_size_per_partition, row_rank, col_rank, row_parallel_mode,
col_parallel_mode, skip_bias_add, data_parallel_rank, pipeline_parallel_rank,
pipeline_parallel_size, tensor_parallel_size)
class _Layernorm_2D(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx: Any, input_: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, row_parallel_mode: ParallelMode,
col_parallel_mode: ParallelMode) -> Tensor:
input_ = input_ - E_x
# in here, input = x - E[x], Var_x = 1 / sqrt(Var[x] + eps)
ctx.normalized_shape = hidden_size
output = input_ * Var_x
ctx.save_for_backward(output, Var_x)
ctx.row_parallel_mode = row_parallel_mode
ctx.col_parallel_mode = col_parallel_mode
return output
@staticmethod
@custom_bwd
def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]:
row_parallel_mode = ctx.row_parallel_mode
col_parallel_mode = ctx.col_parallel_mode
x, Var_x = ctx.saved_tensors
# in here, Var_x = 1 / sqrt(Var[x] + eps), x = (x - E[x]) * Var_x
output_grad_sum = torch.sum(output_grad, dim=-1, keepdim=True)
torch.distributed.all_reduce(output_grad_sum, group=gpc.get_group(row_parallel_mode))
output_grad_sum /= ctx.normalized_shape
output_grad_mul_x_sum = torch.sum(output_grad * x, dim=-1, keepdim=True)
torch.distributed.all_reduce(output_grad_mul_x_sum, group=gpc.get_group(row_parallel_mode))
output_grad_mul_x_sum /= ctx.normalized_shape
input_grad = output_grad.clone()
input_grad -= x * output_grad_mul_x_sum
input_grad -= output_grad_sum
input_grad *= Var_x
return input_grad, None, None, None, None, None
def layernorm_2d(input_: Tensor, E_x: Tensor, Var_x: Tensor, hidden_size: int, row_parallel_mode: ParallelMode,
col_parallel_mode: ParallelMode) -> Tensor:
r"""Layernorm.
Args:
input_ (:class:`torch.tensor`): input matrix.
E_x (:class:`torch.tensor`): mean.
Var_x (:class:`torch.tensor`): variance.
hidden_size (int): hidden size.
row_parallel_mode (:class:`colossalai.context.ParallelMode`): row parallel mode.
col_parallel_mode (:class:`colossalai.context.ParallelMode`): column parallel mode.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
return _Layernorm_2D.apply(input_, E_x, Var_x, hidden_size, row_parallel_mode, col_parallel_mode)
class _AllGatherTensor2D(torch.autograd.Function):
@staticmethod
@custom_fwd(cast_inputs=torch.float16)
def forward(ctx: Any, inputs: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor:
ctx.dim = dim
ctx.parallel_mode = parallel_mode
outputs = all_gather(inputs, dim, parallel_mode)
return outputs
@staticmethod
@custom_bwd
def backward(ctx: Any, output_grad: Tensor) -> Tuple[Tensor, ...]:
grad = reduce_scatter(output_grad, ctx.dim, ctx.parallel_mode)
return grad.contiguous(), None, None
def all_gather_tensor_2d(tensor: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor:
r"""All gather the tensor of 2D parallelism.
Args:
tensor (:class:`torch.tensor`): Input tensor.
dim (int): Dimension to gather.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
return _AllGatherTensor2D.apply(tensor, dim, parallel_mode)
def split_batch_2d(input_: Tensor, dim: int = 0) -> Tensor:
"""Splits 2D tensor in specified dimension across cols.
Args:
input_ (:class:`torch.tensor`): Input tensor.
dim (int): Specified dimension in which to split.
Returns:
:class:`torch.tensor`: The tensor has been split.
"""
dim_size = input_.size(dim)
world_size = gpc.get_world_size(ParallelMode.PARALLEL_2D_COL)
if world_size <= 1:
return input_
assert dim_size % world_size == 0, \
f'The batch size ({dim_size}) is not a multiple of 2D size ({world_size}).'
return torch.chunk(input_, gpc.get_world_size(ParallelMode.PARALLEL_2D_COL),
dim=dim)[gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)].contiguous()
class _ReduceTensor2D(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, parallel_mode):
return all_reduce(input_, parallel_mode)
@staticmethod
def backward(ctx, output_grad):
return output_grad, None
def reduce_tensor_2d(input_: Tensor, parallel_mode: ParallelMode) -> Tensor:
r"""All-reduce the input.
Args:
input_ (:class:`torch.tensor`): Input tensor.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
return _ReduceTensor2D.apply(input_, parallel_mode)
class _ReduceScatterTensor2D(torch.autograd.Function):
@staticmethod
def forward(ctx, input_, dim, parallel_mode):
ctx.dim = dim
ctx.parallel_mode = parallel_mode
return reduce_scatter(input_, dim, parallel_mode)
@staticmethod
def backward(ctx, output_grad):
return all_gather(output_grad, ctx.dim, ctx.parallel_mode), None, None
def reduce_scatter_tensor_2d(tensor: Tensor, dim: int, parallel_mode: ParallelMode) -> Tensor:
r"""Reduce-scatter the input.
Args:
tensor (:class:`torch.tensor`): Input tensor.
dim (int): Dimension to reduce.
parallel_mode (:class:`colossalai.context.ParallelMode`): The parallel mode tensor used.
Note:
The parallel_mode should be concluded in ``ParallelMode``. More details about ``ParallelMode`` could be found
in `parallel_mode <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/context/parallel_mode.py>`_
"""
dim_size = tensor.size(dim)
world_size = gpc.get_world_size(parallel_mode)
assert dim_size % world_size == 0, \
f'The batch size ({dim_size}) is not a multiple of 2D size ({world_size}).'
return _ReduceScatterTensor2D.apply(tensor, dim, parallel_mode)
class _ReduceByBatch2D(torch.autograd.Function):
@staticmethod
def symbolic(graph, input_, reduce_mean: bool = False):
output = all_reduce(input_, ParallelMode.PARALLEL_2D_COL)
if reduce_mean:
reduce_size = gpc.get_world_size(ParallelMode.PARALLEL_2D_COL)
return output / reduce_size
return output
@staticmethod
@custom_fwd(cast_inputs=torch.float32)
def forward(ctx, input_, reduce_mean: bool = False):
output = all_reduce(input_, ParallelMode.PARALLEL_2D_COL)
ctx.reduce_mean = reduce_mean
if reduce_mean:
reduce_size = gpc.get_world_size(ParallelMode.PARALLEL_2D_COL)
ctx.reduce_size = reduce_size
return output.clone() / reduce_size
return output.clone()
@staticmethod
@custom_bwd
def backward(ctx, output_grad):
if ctx.reduce_mean:
return output_grad / ctx.reduce_size, None
else:
return output_grad, None
def reduce_by_batch_2d(input_, reduce_mean: bool = False) -> Tensor:
r"""All-reduce the input from the model parallel region.
Args:
input_ (:class:`torch.tensor`): input matrix.
reduce_mean (bool, optional):
If set to ``True``, it will divide the output by column parallel size, default to False.
"""
return _ReduceByBatch2D.apply(input_, reduce_mean)