ColossalAI/examples/language/openmoe/benchmark/benchmark_fsdp.py

140 lines
4.5 KiB
Python

import argparse
import functools
import os
import torch
import torch.distributed as dist
import tqdm
from model.modeling_openmoe import LlamaConfig, OpenMoeDecoderLayer, OpenMoeForCausalLM, set_openmoe_args
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
from torch.utils.data import Dataset
from torch.utils.data.distributed import DistributedSampler
from transformers.models.llama import LlamaConfig
from utils import PerformanceEvaluator, get_model_numel
from colossalai.moe.manager import MOE_MANAGER
class RandomDataset(Dataset):
def __init__(self, num_samples: int = 1000, max_length: int = 2048, vocab_size: int = 32000):
self.num_samples = num_samples
self.max_length = max_length
self.input_ids = torch.randint(0, vocab_size, (num_samples, max_length))
self.attention_mask = torch.ones_like(self.input_ids)
def __len__(self):
return self.num_samples
def __getitem__(self, idx):
return {
"input_ids": self.input_ids[idx],
"attention_mask": self.attention_mask[idx],
"labels": self.input_ids[idx],
}
def fsdp_main(rank, world_size, args):
# initialize the process group
# initialize the process group
dist.init_process_group("nccl")
MOE_MANAGER.setup(parallel=None)
dp_size = dist.get_world_size()
dataset = RandomDataset(
max_length=args.seq_length,
num_samples=args.batch_size * (args.warmup + args.active) * dp_size,
)
sampler = DistributedSampler(dataset, rank=rank, num_replicas=world_size, shuffle=False)
train_kwargs = {"batch_size": args.batch_size, "sampler": sampler}
train_loader = torch.utils.data.DataLoader(dataset, **train_kwargs)
torch.cuda.set_device(rank)
config = LlamaConfig.from_pretrained("hpcai-tech/openmoe-%s" % args.model_name)
set_openmoe_args(
config,
num_experts=config.num_experts,
moe_layer_interval=config.moe_layer_interval,
enable_load_balance=False,
enable_kernel=False,
enable_comm_overlap=False,
)
torch.set_default_dtype(torch.float16)
model = OpenMoeForCausalLM(config)
torch.set_default_dtype(torch.float32)
auto_wrap_policy = functools.partial(
transformer_auto_wrap_policy,
transformer_layer_cls={
OpenMoeDecoderLayer,
},
)
model = FSDP(
model,
mixed_precision=MixedPrecision(
param_dtype=torch.bfloat16,
reduce_dtype=torch.bfloat16,
buffer_dtype=torch.bfloat16,
),
auto_wrap_policy=auto_wrap_policy,
device_id=torch.cuda.current_device(),
)
optimizer = torch.optim.Adam(model.parameters(), weight_decay=0.01, lr=1e-5)
model.train()
model_numel = get_model_numel(model)
performance_evaluator = PerformanceEvaluator(
model_numel,
enable_grad_checkpoint=True,
ignore_steps=args.warmup,
dp_world_size=dist.get_world_size(),
)
for step, data in tqdm.tqdm(enumerate(train_loader), total=len(train_loader)):
performance_evaluator.on_step_start(step)
input_ids, attention_mask, labels = (
data["input_ids"].cuda(),
data["attention_mask"].cuda(),
data["labels"].cuda(),
)
optimizer.zero_grad()
output = model(
input_ids=input_ids,
labels=labels,
attention_mask=attention_mask,
chunk_head=False,
)
loss = output["loss"]
loss.backward()
optimizer.step()
performance_evaluator.on_step_end(input_ids)
performance_evaluator.on_fit_end()
if dist.get_rank() == 0:
print(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
type=str,
default="base",
choices=["base", "8b"],
help="base or 8b",
)
parser.add_argument("--batch_size", type=int, default=1)
parser.add_argument("--seq_length", type=int, default=2048)
parser.add_argument("--warmup", type=int, default=20)
parser.add_argument("--active", type=int, default=20)
args = parser.parse_args()
torch.manual_seed(42)
world_size = int(os.environ["WORLD_SIZE"])
local_rank = int(os.environ["LOCAL_RANK"])
fsdp_main(local_rank, world_size, args)