mirror of https://github.com/hpcaitech/ColossalAI
65 lines
2.2 KiB
Python
65 lines
2.2 KiB
Python
import time
|
|
|
|
import torch
|
|
from grok1_policy import Grok1ForCausalLMPolicy
|
|
from transformers import AutoModelForCausalLM, LlamaTokenizerFast
|
|
from utils import get_defualt_parser, inference, print_output
|
|
|
|
import colossalai
|
|
from colossalai.booster import Booster
|
|
from colossalai.booster.plugin import HybridParallelPlugin
|
|
from colossalai.cluster import DistCoordinator
|
|
from colossalai.lazy import LazyInitContext
|
|
from colossalai.utils import get_current_device
|
|
|
|
if __name__ == "__main__":
|
|
parser = get_defualt_parser()
|
|
args = parser.parse_args()
|
|
start = time.time()
|
|
colossalai.launch_from_torch({})
|
|
coordinator = DistCoordinator()
|
|
plugin = HybridParallelPlugin(
|
|
tp_size=coordinator.world_size,
|
|
pp_size=1,
|
|
precision="bf16",
|
|
parallel_output=False,
|
|
custom_policy=Grok1ForCausalLMPolicy(),
|
|
)
|
|
booster = Booster(plugin=plugin)
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
with LazyInitContext(default_device=get_current_device()):
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
args.pretrained, trust_remote_code=True, torch_dtype=torch.bfloat16
|
|
)
|
|
model, *_ = booster.boost(model)
|
|
model.eval()
|
|
init_time = time.time() - start
|
|
|
|
# A transformers-compatible version of the grok-1 tokenizer by Xenova
|
|
# https://huggingface.co/Xenova/grok-1-tokenizer
|
|
tokenizer = LlamaTokenizerFast.from_pretrained("Xenova/grok-1-tokenizer")
|
|
|
|
for text in args.text:
|
|
output = inference(
|
|
model.unwrap(),
|
|
tokenizer,
|
|
text,
|
|
max_new_tokens=args.max_new_tokens,
|
|
do_sample=args.do_sample,
|
|
temperature=args.temperature,
|
|
top_k=args.top_k,
|
|
top_p=args.top_p,
|
|
)
|
|
if coordinator.is_master():
|
|
print_output(text, tokenizer.decode(output))
|
|
|
|
overall_time = time.time() - start
|
|
gen_latency = overall_time - init_time
|
|
avg_gen_latency = gen_latency / len(args.text)
|
|
coordinator.print_on_master(
|
|
f"Initializing time: {init_time:.2f} seconds.\n"
|
|
f"Overall time: {overall_time:.2f} seconds. \n"
|
|
f"Generation latency: {gen_latency:.2f} seconds. \n"
|
|
f"Average generation latency: {avg_gen_latency:.2f} seconds. \n"
|
|
)
|