ColossalAI/examples/language/gpt/hybridparallelism/finetune.py

314 lines
11 KiB
Python

import argparse
from typing import Callable, List, Union
import evaluate
import torch
import torch.distributed as dist
import torch.nn as nn
from data import GLUEDataBuilder
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoConfig, GPT2ForSequenceClassification, get_linear_schedule_with_warmup
import colossalai
from colossalai.accelerator import get_accelerator
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, LowLevelZeroPlugin, TorchDDPPlugin
from colossalai.cluster import DistCoordinator
from colossalai.nn.optimizer import HybridAdam
# ==============================
# Prepare Hyperparameters
# ==============================
NUM_EPOCHS = 3
BATCH_SIZE = 32
LEARNING_RATE = 2.4e-5
WEIGHT_DECAY = 0.01
WARMUP_FRACTION = 0.1
output_transform_fn = lambda x: x
criterion = lambda x: x.loss
def move_to_cuda(batch):
return {k: v.cuda() for k, v in batch.items()}
@torch.no_grad()
def evaluate_model(
model: nn.Module,
criterion,
test_dataloader: Union[DataLoader, List[DataLoader]],
num_labels: int,
task_name: str,
eval_splits: List[str],
booster: Booster,
coordinator: DistCoordinator,
):
metric = evaluate.load("glue", task_name, process_id=coordinator.rank, num_process=coordinator.world_size)
model.eval()
def evaluate_subset(dataloader: DataLoader):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
accum_loss = torch.zeros(1, device=get_accelerator().get_current_device())
for batch in dataloader:
batch = move_to_cuda(batch)
labels = batch["labels"]
if use_pipeline:
pg_mesh = booster.plugin.pg_mesh
pp_group = booster.plugin.pp_group
current_pp_group_ranks = pg_mesh.get_ranks_in_group(pp_group)
current_rank = dist.get_rank()
batch = iter([batch])
outputs = booster.execute_pipeline(batch, model, criterion, return_loss=True, return_outputs=True)
if is_pp_last_stage:
logits = outputs["outputs"]["logits"]
val_loss = outputs["loss"]
accum_loss.add_(val_loss)
if num_labels > 1:
preds = torch.argmax(logits, axis=1)
elif num_labels == 1:
preds = logits.squeeze()
dist.broadcast_object_list([preds, val_loss], src=current_pp_group_ranks[-1], group=pp_group)
metric.add_batch(predictions=preds, references=labels)
elif current_rank in current_pp_group_ranks:
object_list = [None, None]
dist.broadcast_object_list(object_list, src=current_pp_group_ranks[-1], group=pp_group)
metric.add_batch(
predictions=object_list[0].to(get_accelerator().get_current_device()), references=labels
)
accum_loss.add_(object_list[1].to(get_accelerator().get_current_device()))
else:
batch = move_to_cuda(batch)
outputs = model(**batch)
val_loss, logits = outputs[:2]
accum_loss.add_(val_loss)
if num_labels > 1:
preds = torch.argmax(logits, axis=1)
elif num_labels == 1:
preds = logits.squeeze()
metric.add_batch(predictions=preds, references=labels)
results = metric.compute()
dist.all_reduce(accum_loss.div_(len(dataloader)))
if coordinator.is_master() and results is not None:
results["loss"] = accum_loss.item() / coordinator.world_size
return results
if isinstance(test_dataloader, DataLoader):
return evaluate_subset(test_dataloader)
else:
assert len(test_dataloader) == len(eval_splits)
final_results = {}
for split, sub_loader in zip(eval_splits, test_dataloader):
results = evaluate_subset(sub_loader)
final_results.update({f"{k}_{split}": v for k, v in results.items()})
return final_results
def train_epoch(
epoch: int,
model: nn.Module,
optimizer: Optimizer,
_criterion: Callable,
lr_scheduler: LRScheduler,
train_dataloader: DataLoader,
booster: Booster,
coordinator: DistCoordinator,
):
use_pipeline = isinstance(booster.plugin, HybridParallelPlugin) and booster.plugin.pp_size > 1
is_pp_last_stage = use_pipeline and booster.plugin.stage_manager.is_last_stage()
total_step = len(train_dataloader)
model.train()
optimizer.zero_grad()
train_dataloader_iter = iter(train_dataloader)
with tqdm(
range(total_step),
desc=f"Epoch [{epoch + 1}/{NUM_EPOCHS}]",
disable=not (coordinator.is_master() or is_pp_last_stage),
) as pbar:
# Forward pass
for _ in pbar:
if use_pipeline:
outputs = booster.execute_pipeline(
train_dataloader_iter, model, _criterion, optimizer, return_loss=True, return_outputs=True
)
# Backward and optimize
if is_pp_last_stage:
loss = outputs["loss"]
pbar.set_postfix({"loss": loss.item()})
else:
data = next(train_dataloader_iter)
data = move_to_cuda(data)
outputs = model(**data)
loss = _criterion(outputs, None)
# Backward
booster.backward(loss, optimizer)
pbar.set_postfix({"loss": loss.item()})
optimizer.step()
optimizer.zero_grad()
lr_scheduler.step()
def main():
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument("-t", "--task", default="mrpc", help="GLUE task to run")
parser.add_argument(
"-p",
"--plugin",
type=str,
default="torch_ddp",
choices=["torch_ddp", "torch_ddp_fp16", "gemini", "low_level_zero", "hybrid_parallel"],
help="plugin to use",
)
parser.add_argument(
"--model_type",
type=str,
default="gpt2",
help="only gpt2 now",
)
parser.add_argument("--target_f1", type=float, default=None, help="target f1 score. Raise exception if not reached")
parser.add_argument("--use_lazy_init", type=bool, default=False, help="for initiating lazy init context")
args = parser.parse_args()
if args.model_type == "gpt2":
model_name = "gpt2"
else:
raise RuntimeError
# ==============================
# Launch Distributed Environment
# ==============================
colossalai.launch_from_torch(config={}, seed=42)
coordinator = DistCoordinator()
# local_batch_size = BATCH_SIZE // coordinator.world_size
lr = LEARNING_RATE * coordinator.world_size
# ==============================
# Instantiate Plugin and Booster
# ==============================
booster_kwargs = {}
if args.plugin == "torch_ddp_fp16":
booster_kwargs["mixed_precision"] = "fp16"
if args.plugin.startswith("torch_ddp"):
plugin = TorchDDPPlugin()
elif args.plugin == "gemini":
plugin = GeminiPlugin(initial_scale=2**5)
elif args.plugin == "low_level_zero":
plugin = LowLevelZeroPlugin(initial_scale=2**5)
elif args.plugin == "hybrid_parallel":
# modify the param accordingly for finetuning test cases
plugin = HybridParallelPlugin(
tp_size=1,
pp_size=2,
num_microbatches=None,
microbatch_size=1,
enable_all_optimization=True,
zero_stage=1,
precision="fp16",
initial_scale=1,
)
booster = Booster(plugin=plugin, **booster_kwargs)
# ==============================
# Prepare Dataloader
# ==============================
data_builder = GLUEDataBuilder(
model_name, plugin, args.task, train_batch_size=BATCH_SIZE, eval_batch_size=BATCH_SIZE
)
train_dataloader = data_builder.train_dataloader()
test_dataloader = data_builder.test_dataloader()
# ====================================
# Prepare model, optimizer
# ====================================
# gpt2 pretrained model
cfg = AutoConfig.from_pretrained(model_name, num_labels=data_builder.num_labels)
if model_name == "gpt2":
model = GPT2ForSequenceClassification.from_pretrained(model_name, config=cfg).cuda()
else:
raise RuntimeError
# optimizer
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": WEIGHT_DECAY,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = HybridAdam(optimizer_grouped_parameters, lr=lr, eps=1e-8)
# lr scheduler
total_steps = len(train_dataloader) * NUM_EPOCHS
num_warmup_steps = int(WARMUP_FRACTION * total_steps)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=total_steps,
)
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
loss = criterion(outputs)
return loss
# ==============================
# Boost with ColossalAI
# ==============================
model, optimizer, _criterion, _, lr_scheduler = booster.boost(
model, optimizer, criterion=_criterion, lr_scheduler=lr_scheduler
)
# ==============================
# Train model
# ==============================
for epoch in range(NUM_EPOCHS):
train_epoch(epoch, model, optimizer, _criterion, lr_scheduler, train_dataloader, booster, coordinator)
results = evaluate_model(
model,
_criterion,
test_dataloader,
data_builder.num_labels,
args.task,
data_builder.eval_splits,
booster,
coordinator,
)
if coordinator.is_master():
print(results)
if args.target_f1 is not None and "f1" in results:
assert results["f1"] >= args.target_f1, f'f1 score {results["f1"]} is lower than target {args.target_f1}'
if __name__ == "__main__":
main()