mirror of https://github.com/hpcaitech/ColossalAI
d202cc28c0
* update accelerator * fix timer * fix amp * update * fix * update bug * add error raise * fix autocast * fix set device * remove doc accelerator * update doc * update doc * update doc * use nullcontext * update cpu * update null context * change time limit for example * udpate * update * update * update * [npu] polish accelerator code --------- Co-authored-by: Xuanlei Zhao <xuanlei.zhao@gmail.com> Co-authored-by: zxl <43881818+oahzxl@users.noreply.github.com> |
||
---|---|---|
.. | ||
model | ||
utils | ||
README.md | ||
arguments.py | ||
bert_dataset_provider.py | ||
evaluation.py | ||
hostfile | ||
loss.py | ||
nvidia_bert_dataset_provider.py | ||
pretrain_utils.py | ||
run_pretrain.sh | ||
run_pretrain_resume.sh | ||
run_pretraining.py |
README.md
Pretraining
- Pretraining roberta through running the script below. Detailed parameter descriptions can be found in the arguments.py.
data_path_prefix
is absolute path specifies output of preprocessing. You have to modify the hostfile according to your cluster.
bash run_pretrain.sh
--hostfile
: servers' host name from /etc/hosts--include
: servers which will be used--nproc_per_node
: number of process(GPU) from each server--data_path_prefix
: absolute location of train data, e.g., /h5/0.h5--eval_data_path_prefix
: absolute location of eval data--tokenizer_path
: tokenizer path contains huggingface tokenizer.json, e.g./tokenizer/tokenizer.json--bert_config
: config.json which represent model--mlm
: model type of backbone, bert or deberta_v2
- if resume training from earlier checkpoint, run the script below.
bash run_pretrain_resume.sh
--resume_train
: whether to resume training--load_pretrain_model
: absolute path which contains model checkpoint--load_optimizer_lr
: absolute path which contains optimizer checkpoint